File size: 79,201 Bytes
8a6cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""gr.Chatbot() component."""

from __future__ import annotations

import copy
import inspect
import warnings
from collections.abc import Callable, Sequence
from dataclasses import dataclass, field
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    Literal,
    Optional,
    Union,
    cast,
)

from gradio_client import utils as client_utils
from gradio_client.documentation import document
from pydantic import Field
from typing_extensions import NotRequired, TypedDict

from gradio import utils
from gradio.component_meta import ComponentMeta
from gradio.components import (
    Component as GradioComponent,
)
from gradio.components.base import Component
from gradio.data_classes import FileData, GradioModel, GradioRootModel
from gradio.events import Events
from gradio.exceptions import Error


class MetadataDict(TypedDict):
    title: Union[str, None]


class Option(TypedDict):
    label: NotRequired[str]
    value: str


class FileDataDict(TypedDict):
    path: str  # server filepath
    url: NotRequired[Optional[str]]  # normalised server url
    size: NotRequired[Optional[int]]  # size in bytes
    orig_name: NotRequired[Optional[str]]  # original filename
    mime_type: NotRequired[Optional[str]]
    is_stream: NotRequired[bool]
    meta: dict[Literal["_type"], Literal["gradio.FileData"]]


class MessageDict(TypedDict):
    content: str | FileDataDict | tuple | Component
    role: Literal["user", "assistant", "system"]
    metadata: NotRequired[MetadataDict]
    options: NotRequired[list[Option]]


class FileMessage(GradioModel):
    file: FileData
    alt_text: Optional[str] = None


class ComponentMessage(GradioModel):
    component: str
    value: Any
    constructor_args: dict[str, Any]
    props: dict[str, Any]


class ChatbotDataTuples(GradioRootModel):
    root: list[
        tuple[
            Union[str, FileMessage, ComponentMessage, None],
            Union[str, FileMessage, ComponentMessage, None],
        ]
    ]


class Metadata(GradioModel):
    title: Optional[str] = None


class Message(GradioModel):
    role: str
    metadata: Metadata = Field(default_factory=Metadata)
    content: Union[str, FileMessage, ComponentMessage]
    options: Optional[list[Option]] = None


class ExampleMessage(TypedDict):
    icon: NotRequired[
        str | FileDataDict
    ]  # filepath or url to an image to be shown in example box
    display_text: NotRequired[
        str
    ]  # text to be shown in example box. If not provided, main_text will be shown
    text: NotRequired[str]  # text to be added to chatbot when example is clicked
    files: NotRequired[
        Sequence[str | FileDataDict]
    ]  # list of file paths or URLs to be added to chatbot when example is clicked


@dataclass
class ChatMessage:
    role: Literal["user", "assistant", "system"]
    content: str | FileData | Component | FileDataDict | tuple | list
    metadata: MetadataDict | Metadata = field(default_factory=Metadata)
    options: Optional[list[Option]] = None


class ChatbotDataMessages(GradioRootModel):
    root: list[Message]


TupleFormat = Sequence[
    tuple[Union[str, tuple[str], None], Union[str, tuple[str], None]]
    | list[Union[str, tuple[str], None]]
]

if TYPE_CHECKING:
    from gradio.components import Timer


def import_component_and_data(
    component_name: str,
) -> GradioComponent | ComponentMeta | Any | None:
    try:
        for component in utils.get_all_components():
            if component_name == component.__name__ and isinstance(
                component, ComponentMeta
            ):
                return component
    except ModuleNotFoundError as e:
        raise ValueError(f"Error importing {component_name}: {e}") from e
    except AttributeError:
        pass

from gradio.events import Dependency

@document()
class Chatbot(Component):
    """
    Creates a chatbot that displays user-submitted messages and responses. Supports a subset of Markdown including bold, italics, code, tables.
    Also supports audio/video/image files, which are displayed in the Chatbot, and other kinds of files which are displayed as links. This
    component is usually used as an output component.

    Demos: chatbot_simple, chatbot_streaming, chatbot_with_tools, chatbot_core_components
    Guides: creating-a-chatbot-fast, creating-a-custom-chatbot-with-blocks, agents-and-tool-usage
    """

    EVENTS = [
        Events.change,
        Events.select,
        Events.like,
        Events.retry,
        Events.undo,
        Events.example_select,
        Events.option_select,
        Events.clear,
        Events.copy,
    ]

    def __init__(
        self,
        value: (list[MessageDict | Message] | TupleFormat | Callable | None) = None,
        *,
        type: Literal["messages", "tuples"] | None = None,
        label: str | None = None,
        every: Timer | float | None = None,
        inputs: Component | Sequence[Component] | set[Component] | None = None,
        show_label: bool | None = None,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        autoscroll: bool = True,
        render: bool = True,
        key: int | str | None = None,
        height: int | str | None = 400,
        resizeable: bool = False,
        max_height: int | str | None = None,
        min_height: int | str | None = None,
        latex_delimiters: list[dict[str, str | bool]] | None = None,
        rtl: bool = False,
        show_share_button: bool | None = None,
        show_copy_button: bool = False,
        avatar_images: tuple[str | Path | None, str | Path | None] | None = None,
        sanitize_html: bool = True,
        render_markdown: bool = True,
        bubble_full_width=None,
        line_breaks: bool = True,
        layout: Literal["panel", "bubble"] | None = None,
        placeholder: str | None = None,
        examples: list[ExampleMessage] | None = None,
        show_copy_all_button=False,
        allow_file_downloads=True,
        group_consecutive_messages: bool = True,
    ):
        """
        Parameters:
            value: Default list of messages to show in chatbot, where each message is of the format {"role": "user", "content": "Help me."}. Role can be one of "user", "assistant", or "system". Content should be either text, or media passed as a Gradio component, e.g. {"content": gr.Image("lion.jpg")}. If callable, the function will be called whenever the app loads to set the initial value of the component.
            type: The format of the messages passed into the chat history parameter of `fn`. If "messages", passes the value as a list of dictionaries with openai-style "role" and "content" keys. The "content" key's value should be one of the following - (1) strings in valid Markdown (2) a dictionary with a "path" key and value corresponding to the file to display or (3) an instance of a Gradio component. At the moment Image, Plot, Video, Gallery, Audio, and HTML are supported. The "role" key should be one of 'user' or 'assistant'. Any other roles will not be displayed in the output. If this parameter is 'tuples', expects a `list[list[str | None | tuple]]`, i.e. a list of lists. The inner list should have 2 elements: the user message and the response message, but this format is deprecated.
            label: the label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
            every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change.
            show_label: if True, will display label.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
            visible: If False, component will be hidden.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
            autoscroll: If True, will automatically scroll to the bottom of the textbox when the value changes, unless the user scrolls up. If False, will not scroll to the bottom of the textbox when the value changes.
            render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
            key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
            height: The height of the component, specified in pixels if a number is passed, or in CSS units if a string is passed. If messages exceed the height, the component will scroll.
            resizeable: If True, the component will be resizeable by the user.
            max_height: The maximum height of the component, specified in pixels if a number is passed, or in CSS units if a string is passed. If messages exceed the height, the component will scroll. If messages are shorter than the height, the component will shrink to fit the content. Will not have any effect if `height` is set and is smaller than `max_height`.
            min_height: The minimum height of the component, specified in pixels if a number is passed, or in CSS units if a string is passed. If messages exceed the height, the component will expand to fit the content. Will not have any effect if `height` is set and is larger than `min_height`.
            latex_delimiters: A list of dicts of the form {"left": open delimiter (str), "right": close delimiter (str), "display": whether to display in newline (bool)} that will be used to render LaTeX expressions. If not provided, `latex_delimiters` is set to `[{ "left": "$$", "right": "$$", "display": True }]`, so only expressions enclosed in $$ delimiters will be rendered as LaTeX, and in a new line. Pass in an empty list to disable LaTeX rendering. For more information, see the [KaTeX documentation](https://katex.org/docs/autorender.html).
            rtl: If True, sets the direction of the rendered text to right-to-left. Default is False, which renders text left-to-right.
            show_share_button: If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise.
            show_copy_button: If True, will show a copy button for each chatbot message.
            avatar_images: Tuple of two avatar image paths or URLs for user and bot (in that order). Pass None for either the user or bot image to skip. Must be within the working directory of the Gradio app or an external URL.
            sanitize_html: If False, will disable HTML sanitization for chatbot messages. This is not recommended, as it can lead to security vulnerabilities.
            render_markdown: If False, will disable Markdown rendering for chatbot messages.
            bubble_full_width: Deprecated.
            line_breaks: If True (default), will enable Github-flavored Markdown line breaks in chatbot messages. If False, single new lines will be ignored. Only applies if `render_markdown` is True.
            layout: If "panel", will display the chatbot in a llm style layout. If "bubble", will display the chatbot with message bubbles, with the user and bot messages on alterating sides. Will default to "bubble".
            placeholder: a placeholder message to display in the chatbot when it is empty. Centered vertically and horizontally in the Chatbot. Supports Markdown and HTML. If None, no placeholder is displayed.
            examples: A list of example messages to display in the chatbot before any user/assistant messages are shown. Each example should be a dictionary with an optional "text" key representing the message that should be populated in the Chatbot when clicked, an optional "files" key, whose value should be a list of files to populate in the Chatbot, an optional "icon" key, whose value should be a filepath or URL to an image to display in the example box, and an optional "display_text" key, whose value should be the text to display in the example box. If "display_text" is not provided, the value of "text" will be displayed.
            show_copy_all_button: If True, will show a copy all button that copies all chatbot messages to the clipboard.
            allow_file_downloads: If True, will show a download button for chatbot messages that contain media. Defaults to True.
            group_consecutive_messages: If True, will display consecutive messages from the same role in the same bubble. If False, will display each message in a separate bubble. Defaults to True.
        """
        if type is None:
            warnings.warn(
                "You have not specified a value for the `type` parameter. Defaulting to the 'tuples' format for chatbot messages, but this is deprecated and will be removed in a future version of Gradio. Please set type='messages' instead, which uses openai-style dictionaries with 'role' and 'content' keys.",
                UserWarning,
            )
            type = "tuples"
        elif type == "tuples":
            warnings.warn(
                "The 'tuples' format for chatbot messages is deprecated and will be removed in a future version of Gradio. Please set type='messages' instead, which uses openai-style 'role' and 'content' keys.",
                UserWarning,
            )
        if type not in ["messages", "tuples"]:
            raise ValueError(
                f"The `type` parameter must be 'messages' or 'tuples', received: {type}"
            )
        self.type: Literal["tuples", "messages"] = type
        self._setup_data_model()
        self.autoscroll = autoscroll
        self.height = height
        self.resizeable = resizeable
        self.max_height = max_height
        self.min_height = min_height
        self.rtl = rtl
        self.group_consecutive_messages = group_consecutive_messages
        if latex_delimiters is None:
            latex_delimiters = [{"left": "$$", "right": "$$", "display": True}]
        self.latex_delimiters = latex_delimiters
        self.show_share_button = (
            (utils.get_space() is not None)
            if show_share_button is None
            else show_share_button
        )
        self.render_markdown = render_markdown
        self.show_copy_button = show_copy_button
        self.sanitize_html = sanitize_html
        if bubble_full_width is not None:
            warnings.warn(
                "The 'bubble_full_width' parameter is deprecated and will be removed in a future version. This parameter no longer has any effect.",
                DeprecationWarning,
            )
        self.bubble_full_width = None
        self.line_breaks = line_breaks
        self.layout = layout
        self.show_copy_all_button = show_copy_all_button
        self.allow_file_downloads = allow_file_downloads
        super().__init__(
            label=label,
            every=every,
            inputs=inputs,
            show_label=show_label,
            container=container,
            scale=scale,
            min_width=min_width,
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            render=render,
            key=key,
            value=value,
        )
        self.avatar_images: list[dict | None] = [None, None]
        if avatar_images is None:
            pass
        else:
            self.avatar_images = [
                self.serve_static_file(avatar_images[0]),
                self.serve_static_file(avatar_images[1]),
            ]
        self.placeholder = placeholder

        self.examples = examples
        self._setup_examples()

    def _setup_data_model(self):
        if self.type == "messages":
            self.data_model = ChatbotDataMessages
        else:
            self.data_model = ChatbotDataTuples

    def _setup_examples(self):
        if self.examples is not None:
            for i, example in enumerate(self.examples):
                if "icon" in example and isinstance(example["icon"], str):
                    example["icon"] = self.serve_static_file(example["icon"])
                file_info = example.get("files")
                if file_info is not None and not isinstance(file_info, list):
                    raise Error(
                        "Data incompatible with files format. The 'files' passed should be a list of file paths or URLs."
                    )
                if file_info is not None:
                    for i, file in enumerate(file_info):
                        if isinstance(file, str):
                            orig_name = Path(file).name
                            file_data = self.serve_static_file(file)
                            if file_data is not None:
                                file_data["orig_name"] = orig_name
                                file_data["mime_type"] = client_utils.get_mimetype(
                                    orig_name
                                )
                                file_data = FileDataDict(**file_data)
                                file_info[i] = file_data

    @staticmethod
    def _check_format(messages: Any, type: Literal["messages", "tuples"]):
        if type == "messages":
            all_valid = all(
                isinstance(message, dict)
                and "role" in message
                and "content" in message
                or isinstance(message, ChatMessage | Message)
                for message in messages
            )
            if not all_valid:
                raise Error(
                    "Data incompatible with messages format. Each message should be a dictionary with 'role' and 'content' keys or a ChatMessage object."
                )
        elif not all(
            isinstance(message, (tuple, list)) and len(message) == 2
            for message in messages
        ):
            raise Error(
                "Data incompatible with tuples format. Each message should be a list of length 2."
            )

    def _preprocess_content(
        self,
        chat_message: str | FileMessage | ComponentMessage | None,
    ) -> str | GradioComponent | tuple[str | None] | tuple[str | None, str] | None:
        if chat_message is None:
            return None
        elif isinstance(chat_message, FileMessage):
            if chat_message.alt_text is not None:
                return (chat_message.file.path, chat_message.alt_text)
            else:
                return (chat_message.file.path,)
        elif isinstance(chat_message, str):
            return chat_message
        elif isinstance(chat_message, ComponentMessage):
            capitalized_component = (
                chat_message.component.upper()
                if chat_message.component in ("json", "html")
                else chat_message.component.capitalize()
            )
            component = import_component_and_data(capitalized_component)
            if component is not None:
                instance = component()  # type: ignore
                if not instance.data_model:
                    payload = chat_message.value
                elif issubclass(instance.data_model, GradioModel):
                    payload = instance.data_model(**chat_message.value)
                elif issubclass(instance.data_model, GradioRootModel):
                    payload = instance.data_model(root=chat_message.value)
                else:
                    payload = chat_message.value
                value = instance.preprocess(payload)
                return component(value=value, **chat_message.constructor_args)  # type: ignore
            else:
                raise ValueError(
                    f"Invalid component for Chatbot component: {chat_message.component}"
                )
        else:
            raise ValueError(f"Invalid message for Chatbot component: {chat_message}")

    def _preprocess_messages_tuples(
        self, payload: ChatbotDataTuples
    ) -> list[list[str | tuple[str] | tuple[str, str] | None]]:
        processed_messages = []
        for message_pair in payload.root:
            if not isinstance(message_pair, (tuple, list)):
                raise TypeError(
                    f"Expected a list of lists or list of tuples. Received: {message_pair}"
                )
            if len(message_pair) != 2:
                raise TypeError(
                    f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}"
                )
            processed_messages.append(
                [
                    self._preprocess_content(message_pair[0]),
                    self._preprocess_content(message_pair[1]),
                ]
            )
        return processed_messages

    def preprocess(
        self,
        payload: ChatbotDataTuples | ChatbotDataMessages | None,
    ) -> list[list[str | tuple[str] | tuple[str, str] | None]] | list[MessageDict]:
        """
        Parameters:
            payload: data as a ChatbotData object
        Returns:
            If type is 'tuples', passes the messages in the chatbot as a `list[list[str | None | tuple]]`, i.e. a list of lists. The inner list has 2 elements: the user message and the response message. Each message can be (1) a string in valid Markdown, (2) a tuple if there are displayed files: (a filepath or URL to a file, [optional string alt text]), or (3) None, if there is no message displayed. If type is 'messages', passes the value as a list of dictionaries with 'role' and 'content' keys. The `content` key's value supports everything the `tuples` format supports.
        """
        if payload is None:
            return []
        if self.type == "tuples":
            if not isinstance(payload, ChatbotDataTuples):
                raise Error("Data incompatible with the tuples format")
            return self._preprocess_messages_tuples(cast(ChatbotDataTuples, payload))
        if not isinstance(payload, ChatbotDataMessages):
            raise Error("Data incompatible with the messages format")
        message_dicts = []
        for message in payload.root:
            message_dict = cast(MessageDict, message.model_dump())
            message_dict["content"] = self._preprocess_content(message.content)
            message_dicts.append(message_dict)
        return message_dicts

    @staticmethod
    def _get_alt_text(chat_message: dict | list | tuple | GradioComponent):
        if isinstance(chat_message, dict):
            return chat_message.get("alt_text")
        elif not isinstance(chat_message, GradioComponent) and len(chat_message) > 1:
            return chat_message[1]

    @staticmethod
    def _create_file_message(chat_message, filepath):
        mime_type = client_utils.get_mimetype(filepath)

        return FileMessage(
            file=FileData(path=filepath, mime_type=mime_type),
            alt_text=Chatbot._get_alt_text(chat_message),
        )

    def _postprocess_content(
        self,
        chat_message: str
        | tuple
        | list
        | FileDataDict
        | FileData
        | GradioComponent
        | ComponentMessage
        | None,
    ) -> str | FileMessage | ComponentMessage | None:
        if chat_message is None:
            return None
        if isinstance(chat_message, (FileMessage, ComponentMessage, str)):
            return chat_message
        elif isinstance(chat_message, FileData):
            return FileMessage(file=chat_message)
        elif isinstance(chat_message, GradioComponent):
            chat_message.unrender()
            component = import_component_and_data(type(chat_message).__name__)
            if component:
                chat_message.constructor_args["render"] = False
                component = chat_message.__class__(**chat_message.constructor_args)
                chat_message.constructor_args.pop("value", None)
                config = component.get_config()
                return ComponentMessage(
                    component=type(chat_message).__name__.lower(),
                    value=config.get("value", None),
                    constructor_args=chat_message.constructor_args,
                    props=config,
                )
        elif isinstance(chat_message, dict) and "path" in chat_message:
            filepath = chat_message["path"]
            return self._create_file_message(chat_message, filepath)
        elif isinstance(chat_message, (tuple, list)):
            filepath = str(chat_message[0])
            return self._create_file_message(chat_message, filepath)
        else:
            raise ValueError(f"Invalid message for Chatbot component: {chat_message}")

    def _postprocess_messages_tuples(self, value: TupleFormat) -> ChatbotDataTuples:
        processed_messages = []
        for message_pair in value:
            processed_messages.append(
                [
                    self._postprocess_content(message_pair[0]),
                    self._postprocess_content(message_pair[1]),
                ]
            )
        return ChatbotDataTuples(root=processed_messages)

    def _postprocess_message_messages(
        self, message: MessageDict | ChatMessage
    ) -> Message:
        message = copy.deepcopy(message)
        if isinstance(message, dict):
            message["content"] = self._postprocess_content(message["content"])
            msg = Message(**message)  # type: ignore
        elif isinstance(message, ChatMessage):
            message.content = self._postprocess_content(message.content)  # type: ignore
            msg = Message(
                role=message.role,
                content=message.content,  # type: ignore
                metadata=message.metadata,  # type: ignore
                options=message.options,
            )
        elif isinstance(message, Message):
            return message
        else:
            raise Error(
                f"Invalid message for Chatbot component: {message}", visible=False
            )

        msg.content = (
            inspect.cleandoc(msg.content)
            if isinstance(msg.content, str)
            else msg.content
        )
        return msg

    def postprocess(
        self,
        value: TupleFormat | list[MessageDict | Message] | None,
    ) -> ChatbotDataTuples | ChatbotDataMessages:
        """
        Parameters:
            value: If type is `tuples`, expects a `list[list[str | None | tuple]]`, i.e. a list of lists. The inner list should have 2 elements: the user message and the response message. The individual messages can be (1) strings in valid Markdown, (2) tuples if sending files: (a filepath or URL to a file, [optional string alt text]) -- if the file is image/video/audio, it is displayed in the Chatbot, or (3) None, in which case the message is not displayed. If type is 'messages', passes the value as a list of dictionaries with 'role' and 'content' keys. The `content` key's value supports everything the `tuples` format supports.
        Returns:
            an object of type ChatbotData
        """
        data_model = cast(
            Union[type[ChatbotDataTuples], type[ChatbotDataMessages]], self.data_model
        )
        if value is None:
            return data_model(root=[])
        if self.type == "tuples":
            self._check_format(value, "tuples")
            return self._postprocess_messages_tuples(cast(TupleFormat, value))
        self._check_format(value, "messages")
        processed_messages = [
            self._postprocess_message_messages(cast(MessageDict, message))
            for message in value
        ]
        return ChatbotDataMessages(root=processed_messages)

    def example_payload(self) -> Any:
        if self.type == "messages":
            return [
                Message(role="user", content="Hello!").model_dump(),
                Message(role="assistant", content="How can I help you?").model_dump(),
            ]
        return [["Hello!", None]]

    def example_value(self) -> Any:
        if self.type == "messages":
            return [
                Message(role="user", content="Hello!").model_dump(),
                Message(role="assistant", content="How can I help you?").model_dump(),
            ]
        return [["Hello!", None]]
    from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING
    from gradio.blocks import Block
    if TYPE_CHECKING:
        from gradio.components import Timer

    
    def change(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
        """
        ...
    
    def select(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
        """
        ...
    
    def like(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        like_user_message: bool = False,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
            like_user_message: Whether to display the like buttons for user messages in the chatbot.,
        
        """
        ...
    
    def retry(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
        """
        ...
    
    def undo(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
        """
        ...
    
    def example_select(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
        """
        ...
    
    def option_select(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
        """
        ...
    
    def clear(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
        """
        ...
    
    def copy(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
        
        """
        ...