File size: 80,365 Bytes
8a6cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
#
# Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
# Use of this file is governed by the BSD 3-clause license that
# can be found in the LICENSE.txt file in the project root.
#

#
# The embodiment of the adaptive LL(*), ALL(*), parsing strategy.
#
# <p>
# The basic complexity of the adaptive strategy makes it harder to understand.
# We begin with ATN simulation to build paths in a DFA. Subsequent prediction
# requests go through the DFA first. If they reach a state without an edge for
# the current symbol, the algorithm fails over to the ATN simulation to
# complete the DFA path for the current input (until it finds a conflict state
# or uniquely predicting state).</p>
#
# <p>
# All of that is done without using the outer context because we want to create
# a DFA that is not dependent upon the rule invocation stack when we do a
# prediction. One DFA works in all contexts. We avoid using context not
# necessarily because it's slower, although it can be, but because of the DFA
# caching problem. The closure routine only considers the rule invocation stack
# created during prediction beginning in the decision rule. For example, if
# prediction occurs without invoking another rule's ATN, there are no context
# stacks in the configurations. When lack of context leads to a conflict, we
# don't know if it's an ambiguity or a weakness in the strong LL(*) parsing
# strategy (versus full LL(*)).</p>
#
# <p>
# When SLL yields a configuration set with conflict, we rewind the input and
# retry the ATN simulation, this time using full outer context without adding
# to the DFA. Configuration context stacks will be the full invocation stacks
# from the start rule. If we get a conflict using full context, then we can
# definitively say we have a true ambiguity for that input sequence. If we
# don't get a conflict, it implies that the decision is sensitive to the outer
# context. (It is not context-sensitive in the sense of context-sensitive
# grammars.)</p>
#
# <p>
# The next time we reach this DFA state with an SLL conflict, through DFA
# simulation, we will again retry the ATN simulation using full context mode.
# This is slow because we can't save the results and have to "interpret" the
# ATN each time we get that input.</p>
#
# <p>
# <strong>CACHING FULL CONTEXT PREDICTIONS</strong></p>
#
# <p>
# We could cache results from full context to predicted alternative easily and
# that saves a lot of time but doesn't work in presence of predicates. The set
# of visible predicates from the ATN start state changes depending on the
# context, because closure can fall off the end of a rule. I tried to cache
# tuples (stack context, semantic context, predicted alt) but it was slower
# than interpreting and much more complicated. Also required a huge amount of
# memory. The goal is not to create the world's fastest parser anyway. I'd like
# to keep this algorithm simple. By launching multiple threads, we can improve
# the speed of parsing across a large number of files.</p>
#
# <p>
# There is no strict ordering between the amount of input used by SLL vs LL,
# which makes it really hard to build a cache for full context. Let's say that
# we have input A B C that leads to an SLL conflict with full context X. That
# implies that using X we might only use A B but we could also use A B C D to
# resolve conflict. Input A B C D could predict alternative 1 in one position
# in the input and A B C E could predict alternative 2 in another position in
# input. The conflicting SLL configurations could still be non-unique in the
# full context prediction, which would lead us to requiring more input than the
# original A B C.	To make a	prediction cache work, we have to track	the exact
# input	used during the previous prediction. That amounts to a cache that maps
# X to a specific DFA for that context.</p>
#
# <p>
# Something should be done for left-recursive expression predictions. They are
# likely LL(1) + pred eval. Easier to do the whole SLL unless error and retry
# with full LL thing Sam does.</p>
#
# <p>
# <strong>AVOIDING FULL CONTEXT PREDICTION</strong></p>
#
# <p>
# We avoid doing full context retry when the outer context is empty, we did not
# dip into the outer context by falling off the end of the decision state rule,
# or when we force SLL mode.</p>
#
# <p>
# As an example of the not dip into outer context case, consider as super
# constructor calls versus function calls. One grammar might look like
# this:</p>
#
# <pre>
# ctorBody
#   : '{' superCall? stat* '}'
#   ;
# </pre>
#
# <p>
# Or, you might see something like</p>
#
# <pre>
# stat
#   : superCall ';'
#   | expression ';'
#   | ...
#   ;
# </pre>
#
# <p>
# In both cases I believe that no closure operations will dip into the outer
# context. In the first case ctorBody in the worst case will stop at the '}'.
# In the 2nd case it should stop at the ';'. Both cases should stay within the
# entry rule and not dip into the outer context.</p>
#
# <p>
# <strong>PREDICATES</strong></p>
#
# <p>
# Predicates are always evaluated if present in either SLL or LL both. SLL and
# LL simulation deals with predicates differently. SLL collects predicates as
# it performs closure operations like ANTLR v3 did. It delays predicate
# evaluation until it reaches and accept state. This allows us to cache the SLL
# ATN simulation whereas, if we had evaluated predicates on-the-fly during
# closure, the DFA state configuration sets would be different and we couldn't
# build up a suitable DFA.</p>
#
# <p>
# When building a DFA accept state during ATN simulation, we evaluate any
# predicates and return the sole semantically valid alternative. If there is
# more than 1 alternative, we report an ambiguity. If there are 0 alternatives,
# we throw an exception. Alternatives without predicates act like they have
# true predicates. The simple way to think about it is to strip away all
# alternatives with false predicates and choose the minimum alternative that
# remains.</p>
#
# <p>
# When we start in the DFA and reach an accept state that's predicated, we test
# those and return the minimum semantically viable alternative. If no
# alternatives are viable, we throw an exception.</p>
#
# <p>
# During full LL ATN simulation, closure always evaluates predicates and
# on-the-fly. This is crucial to reducing the configuration set size during
# closure. It hits a landmine when parsing with the Java grammar, for example,
# without this on-the-fly evaluation.</p>
#
# <p>
# <strong>SHARING DFA</strong></p>
#
# <p>
# All instances of the same parser share the same decision DFAs through a
# static field. Each instance gets its own ATN simulator but they share the
# same {@link #decisionToDFA} field. They also share a
# {@link PredictionContextCache} object that makes sure that all
# {@link PredictionContext} objects are shared among the DFA states. This makes
# a big size difference.</p>
#
# <p>
# <strong>THREAD SAFETY</strong></p>
#
# <p>
# The {@link ParserATNSimulator} locks on the {@link #decisionToDFA} field when
# it adds a new DFA object to that array. {@link #addDFAEdge}
# locks on the DFA for the current decision when setting the
# {@link DFAState#edges} field. {@link #addDFAState} locks on
# the DFA for the current decision when looking up a DFA state to see if it
# already exists. We must make sure that all requests to add DFA states that
# are equivalent result in the same shared DFA object. This is because lots of
# threads will be trying to update the DFA at once. The
# {@link #addDFAState} method also locks inside the DFA lock
# but this time on the shared context cache when it rebuilds the
# configurations' {@link PredictionContext} objects using cached
# subgraphs/nodes. No other locking occurs, even during DFA simulation. This is
# safe as long as we can guarantee that all threads referencing
# {@code s.edge[t]} get the same physical target {@link DFAState}, or
# {@code null}. Once into the DFA, the DFA simulation does not reference the
# {@link DFA#states} map. It follows the {@link DFAState#edges} field to new
# targets. The DFA simulator will either find {@link DFAState#edges} to be
# {@code null}, to be non-{@code null} and {@code dfa.edges[t]} null, or
# {@code dfa.edges[t]} to be non-null. The
# {@link #addDFAEdge} method could be racing to set the field
# but in either case the DFA simulator works; if {@code null}, and requests ATN
# simulation. It could also race trying to get {@code dfa.edges[t]}, but either
# way it will work because it's not doing a test and set operation.</p>
#
# <p>
# <strong>Starting with SLL then failing to combined SLL/LL (Two-Stage
# Parsing)</strong></p>
#
# <p>
# Sam pointed out that if SLL does not give a syntax error, then there is no
# point in doing full LL, which is slower. We only have to try LL if we get a
# syntax error. For maximum speed, Sam starts the parser set to pure SLL
# mode with the {@link BailErrorStrategy}:</p>
#
# <pre>
# parser.{@link Parser#getInterpreter() getInterpreter()}.{@link #setPredictionMode setPredictionMode}{@code (}{@link PredictionMode#SLL}{@code )};
# parser.{@link Parser#setErrorHandler setErrorHandler}(new {@link BailErrorStrategy}());
# </pre>
#
# <p>
# If it does not get a syntax error, then we're done. If it does get a syntax
# error, we need to retry with the combined SLL/LL strategy.</p>
#
# <p>
# The reason this works is as follows. If there are no SLL conflicts, then the
# grammar is SLL (at least for that input set). If there is an SLL conflict,
# the full LL analysis must yield a set of viable alternatives which is a
# subset of the alternatives reported by SLL. If the LL set is a singleton,
# then the grammar is LL but not SLL. If the LL set is the same size as the SLL
# set, the decision is SLL. If the LL set has size &gt; 1, then that decision
# is truly ambiguous on the current input. If the LL set is smaller, then the
# SLL conflict resolution might choose an alternative that the full LL would
# rule out as a possibility based upon better context information. If that's
# the case, then the SLL parse will definitely get an error because the full LL
# analysis says it's not viable. If SLL conflict resolution chooses an
# alternative within the LL set, them both SLL and LL would choose the same
# alternative because they both choose the minimum of multiple conflicting
# alternatives.</p>
#
# <p>
# Let's say we have a set of SLL conflicting alternatives {@code {1, 2, 3}} and
# a smaller LL set called <em>s</em>. If <em>s</em> is {@code {2, 3}}, then SLL
# parsing will get an error because SLL will pursue alternative 1. If
# <em>s</em> is {@code {1, 2}} or {@code {1, 3}} then both SLL and LL will
# choose the same alternative because alternative one is the minimum of either
# set. If <em>s</em> is {@code {2}} or {@code {3}} then SLL will get a syntax
# error. If <em>s</em> is {@code {1}} then SLL will succeed.</p>
#
# <p>
# Of course, if the input is invalid, then we will get an error for sure in
# both SLL and LL parsing. Erroneous input will therefore require 2 passes over
# the input.</p>
#
import sys
from antlr4 import DFA
from antlr4.PredictionContext import PredictionContextCache, PredictionContext, SingletonPredictionContext, \
    PredictionContextFromRuleContext
from antlr4.BufferedTokenStream import TokenStream
from antlr4.Parser import Parser
from antlr4.ParserRuleContext import ParserRuleContext
from antlr4.RuleContext import RuleContext
from antlr4.Token import Token
from antlr4.Utils import str_list
from antlr4.atn.ATN import ATN
from antlr4.atn.ATNConfig import ATNConfig
from antlr4.atn.ATNConfigSet import ATNConfigSet
from antlr4.atn.ATNSimulator import ATNSimulator
from antlr4.atn.ATNState import StarLoopEntryState, DecisionState, RuleStopState, ATNState
from antlr4.atn.PredictionMode import PredictionMode
from antlr4.atn.SemanticContext import SemanticContext, AND, andContext, orContext
from antlr4.atn.Transition import Transition, RuleTransition, ActionTransition, PrecedencePredicateTransition, \
    PredicateTransition, AtomTransition, SetTransition, NotSetTransition
from antlr4.dfa.DFAState import DFAState, PredPrediction
from antlr4.error.Errors import NoViableAltException


class ParserATNSimulator(ATNSimulator):
    __slots__ = (
        'parser', 'decisionToDFA', 'predictionMode', '_input', '_startIndex',
        '_outerContext', '_dfa', 'mergeCache'
    )

    debug = False
    debug_list_atn_decisions = False
    dfa_debug = False
    retry_debug = False


    def __init__(self, parser:Parser, atn:ATN, decisionToDFA:list, sharedContextCache:PredictionContextCache):
        super().__init__(atn, sharedContextCache)
        self.parser = parser
        self.decisionToDFA = decisionToDFA
        # SLL, LL, or LL + exact ambig detection?#
        self.predictionMode = PredictionMode.LL
        # LAME globals to avoid parameters!!!!! I need these down deep in predTransition
        self._input = None
        self._startIndex = 0
        self._outerContext = None
        self._dfa = None
        # Each prediction operation uses a cache for merge of prediction contexts.
        #  Don't keep around as it wastes huge amounts of memory. DoubleKeyMap
        #  isn't synchronized but we're ok since two threads shouldn't reuse same
        #  parser/atnsim object because it can only handle one input at a time.
        #  This maps graphs a and b to merged result c. (a,b)&rarr;c. We can avoid
        #  the merge if we ever see a and b again.  Note that (b,a)&rarr;c should
        #  also be examined during cache lookup.
        #
        self.mergeCache = None


    def reset(self):
        pass

    def adaptivePredict(self, input:TokenStream, decision:int, outerContext:ParserRuleContext):
        if ParserATNSimulator.debug or ParserATNSimulator.debug_list_atn_decisions:
            print("adaptivePredict decision " + str(decision) +
                                   " exec LA(1)==" + self.getLookaheadName(input) +
                                   " line " + str(input.LT(1).line) + ":" +
                                   str(input.LT(1).column))
        self._input = input
        self._startIndex = input.index
        self._outerContext = outerContext

        dfa = self.decisionToDFA[decision]
        self._dfa = dfa
        m = input.mark()
        index = input.index

        # Now we are certain to have a specific decision's DFA
        # But, do we still need an initial state?
        try:
            if dfa.precedenceDfa:
                # the start state for a precedence DFA depends on the current
                # parser precedence, and is provided by a DFA method.
                s0 = dfa.getPrecedenceStartState(self.parser.getPrecedence())
            else:
                # the start state for a "regular" DFA is just s0
                s0 = dfa.s0

            if s0 is None:
                if outerContext is None:
                    outerContext = ParserRuleContext.EMPTY
                if ParserATNSimulator.debug or ParserATNSimulator.debug_list_atn_decisions:
                    print("predictATN decision " + str(dfa.decision) +
                                       " exec LA(1)==" + self.getLookaheadName(input) +
                                       ", outerContext=" + outerContext.toString(self.parser.literalNames, None))

                fullCtx = False
                s0_closure = self.computeStartState(dfa.atnStartState, ParserRuleContext.EMPTY, fullCtx)

                if dfa.precedenceDfa:
                    # If this is a precedence DFA, we use applyPrecedenceFilter
                    # to convert the computed start state to a precedence start
                    # state. We then use DFA.setPrecedenceStartState to set the
                    # appropriate start state for the precedence level rather
                    # than simply setting DFA.s0.
                    #
                    dfa.s0.configs = s0_closure # not used for prediction but useful to know start configs anyway
                    s0_closure = self.applyPrecedenceFilter(s0_closure)
                    s0 = self.addDFAState(dfa, DFAState(configs=s0_closure))
                    dfa.setPrecedenceStartState(self.parser.getPrecedence(), s0)
                else:
                    s0 = self.addDFAState(dfa, DFAState(configs=s0_closure))
                    dfa.s0 = s0

            alt = self.execATN(dfa, s0, input, index, outerContext)
            if ParserATNSimulator.debug:
                print("DFA after predictATN: " + dfa.toString(self.parser.literalNames))
            return alt
        finally:
            self._dfa = None
            self.mergeCache = None # wack cache after each prediction
            input.seek(index)
            input.release(m)

    # Performs ATN simulation to compute a predicted alternative based
    #  upon the remaining input, but also updates the DFA cache to avoid
    #  having to traverse the ATN again for the same input sequence.

    # There are some key conditions we're looking for after computing a new
    # set of ATN configs (proposed DFA state):
          # if the set is empty, there is no viable alternative for current symbol
          # does the state uniquely predict an alternative?
          # does the state have a conflict that would prevent us from
          #   putting it on the work list?

    # We also have some key operations to do:
          # add an edge from previous DFA state to potentially new DFA state, D,
          #   upon current symbol but only if adding to work list, which means in all
          #   cases except no viable alternative (and possibly non-greedy decisions?)
          # collecting predicates and adding semantic context to DFA accept states
          # adding rule context to context-sensitive DFA accept states
          # consuming an input symbol
          # reporting a conflict
          # reporting an ambiguity
          # reporting a context sensitivity
          # reporting insufficient predicates

    # cover these cases:
    #    dead end
    #    single alt
    #    single alt + preds
    #    conflict
    #    conflict + preds
    #
    def execATN(self, dfa:DFA, s0:DFAState, input:TokenStream, startIndex:int, outerContext:ParserRuleContext ):
        if ParserATNSimulator.debug or ParserATNSimulator.debug_list_atn_decisions:
            print("execATN decision " + str(dfa.decision) +
                    " exec LA(1)==" + self.getLookaheadName(input) +
                    " line " + str(input.LT(1).line) + ":" + str(input.LT(1).column))

        previousD = s0

        if ParserATNSimulator.debug:
            print("s0 = " + str(s0))

        t = input.LA(1)

        while True: # while more work
            D = self.getExistingTargetState(previousD, t)
            if D is None:
                D = self.computeTargetState(dfa, previousD, t)
            if D is self.ERROR:
                # if any configs in previous dipped into outer context, that
                # means that input up to t actually finished entry rule
                # at least for SLL decision. Full LL doesn't dip into outer
                # so don't need special case.
                # We will get an error no matter what so delay until after
                # decision; better error message. Also, no reachable target
                # ATN states in SLL implies LL will also get nowhere.
                # If conflict in states that dip out, choose min since we
                # will get error no matter what.
                e = self.noViableAlt(input, outerContext, previousD.configs, startIndex)
                input.seek(startIndex)
                alt = self.getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previousD.configs, outerContext)
                if alt!=ATN.INVALID_ALT_NUMBER:
                    return alt
                raise e

            if D.requiresFullContext and self.predictionMode != PredictionMode.SLL:
                # IF PREDS, MIGHT RESOLVE TO SINGLE ALT => SLL (or syntax error)
                conflictingAlts = D.configs.conflictingAlts
                if D.predicates is not None:
                    if ParserATNSimulator.debug:
                        print("DFA state has preds in DFA sim LL failover")
                    conflictIndex = input.index
                    if conflictIndex != startIndex:
                        input.seek(startIndex)

                    conflictingAlts = self.evalSemanticContext(D.predicates, outerContext, True)
                    if len(conflictingAlts)==1:
                        if ParserATNSimulator.debug:
                            print("Full LL avoided")
                        return min(conflictingAlts)

                    if conflictIndex != startIndex:
                        # restore the index so reporting the fallback to full
                        # context occurs with the index at the correct spot
                        input.seek(conflictIndex)

                if ParserATNSimulator.dfa_debug:
                    print("ctx sensitive state " + str(outerContext) +" in " + str(D))
                fullCtx = True
                s0_closure = self.computeStartState(dfa.atnStartState, outerContext, fullCtx)
                self.reportAttemptingFullContext(dfa, conflictingAlts, D.configs, startIndex, input.index)
                alt = self.execATNWithFullContext(dfa, D, s0_closure, input, startIndex, outerContext)
                return alt

            if D.isAcceptState:
                if D.predicates is None:
                    return D.prediction

                stopIndex = input.index
                input.seek(startIndex)
                alts = self.evalSemanticContext(D.predicates, outerContext, True)
                if len(alts)==0:
                    raise self.noViableAlt(input, outerContext, D.configs, startIndex)
                elif len(alts)==1:
                    return min(alts)
                else:
                    # report ambiguity after predicate evaluation to make sure the correct
                    # set of ambig alts is reported.
                    self.reportAmbiguity(dfa, D, startIndex, stopIndex, False, alts, D.configs)
                    return min(alts)

            previousD = D

            if t != Token.EOF:
                input.consume()
                t = input.LA(1)

    #
    # Get an existing target state for an edge in the DFA. If the target state
    # for the edge has not yet been computed or is otherwise not available,
    # this method returns {@code null}.
    #
    # @param previousD The current DFA state
    # @param t The next input symbol
    # @return The existing target DFA state for the given input symbol
    # {@code t}, or {@code null} if the target state for this edge is not
    # already cached
    #
    def getExistingTargetState(self, previousD:DFAState, t:int):
        edges = previousD.edges
        if edges is None or t + 1 < 0 or t + 1 >= len(edges):
            return None
        else:
            return edges[t + 1]

    #
    # Compute a target state for an edge in the DFA, and attempt to add the
    # computed state and corresponding edge to the DFA.
    #
    # @param dfa The DFA
    # @param previousD The current DFA state
    # @param t The next input symbol
    #
    # @return The computed target DFA state for the given input symbol
    # {@code t}. If {@code t} does not lead to a valid DFA state, this method
    # returns {@link #ERROR}.
    #
    def computeTargetState(self, dfa:DFA, previousD:DFAState, t:int):
        reach = self.computeReachSet(previousD.configs, t, False)
        if reach is None:
            self.addDFAEdge(dfa, previousD, t, self.ERROR)
            return self.ERROR

        # create new target state; we'll add to DFA after it's complete
        D = DFAState(configs=reach)

        predictedAlt = self.getUniqueAlt(reach)

        if ParserATNSimulator.debug:
            altSubSets = PredictionMode.getConflictingAltSubsets(reach)
            print("SLL altSubSets=" + str(altSubSets) + ", configs=" + str(reach) +
                        ", predict=" + str(predictedAlt) + ", allSubsetsConflict=" +
                        str(PredictionMode.allSubsetsConflict(altSubSets)) + ", conflictingAlts=" +
                        str(self.getConflictingAlts(reach)))

        if predictedAlt!=ATN.INVALID_ALT_NUMBER:
            # NO CONFLICT, UNIQUELY PREDICTED ALT
            D.isAcceptState = True
            D.configs.uniqueAlt = predictedAlt
            D.prediction = predictedAlt
        elif PredictionMode.hasSLLConflictTerminatingPrediction(self.predictionMode, reach):
            # MORE THAN ONE VIABLE ALTERNATIVE
            D.configs.conflictingAlts = self.getConflictingAlts(reach)
            D.requiresFullContext = True
            # in SLL-only mode, we will stop at this state and return the minimum alt
            D.isAcceptState = True
            D.prediction = min(D.configs.conflictingAlts)

        if D.isAcceptState and D.configs.hasSemanticContext:
            self.predicateDFAState(D, self.atn.getDecisionState(dfa.decision))
            if D.predicates is not None:
                D.prediction = ATN.INVALID_ALT_NUMBER

        # all adds to dfa are done after we've created full D state
        D = self.addDFAEdge(dfa, previousD, t, D)
        return D

    def predicateDFAState(self, dfaState:DFAState, decisionState:DecisionState):
        # We need to test all predicates, even in DFA states that
        # uniquely predict alternative.
        nalts = len(decisionState.transitions)
        # Update DFA so reach becomes accept state with (predicate,alt)
        # pairs if preds found for conflicting alts
        altsToCollectPredsFrom = self.getConflictingAltsOrUniqueAlt(dfaState.configs)
        altToPred = self.getPredsForAmbigAlts(altsToCollectPredsFrom, dfaState.configs, nalts)
        if altToPred is not None:
            dfaState.predicates = self.getPredicatePredictions(altsToCollectPredsFrom, altToPred)
            dfaState.prediction = ATN.INVALID_ALT_NUMBER # make sure we use preds
        else:
            # There are preds in configs but they might go away
            # when OR'd together like {p}? || NONE == NONE. If neither
            # alt has preds, resolve to min alt
            dfaState.prediction = min(altsToCollectPredsFrom)

    # comes back with reach.uniqueAlt set to a valid alt
    def execATNWithFullContext(self, dfa:DFA, D:DFAState, # how far we got before failing over
                                         s0:ATNConfigSet,
                                         input:TokenStream,
                                         startIndex:int,
                                         outerContext:ParserRuleContext):
        if ParserATNSimulator.debug or ParserATNSimulator.debug_list_atn_decisions:
            print("execATNWithFullContext", str(s0))
        fullCtx = True
        foundExactAmbig = False
        reach = None
        previous = s0
        input.seek(startIndex)
        t = input.LA(1)
        predictedAlt = -1
        while (True): # while more work
            reach = self.computeReachSet(previous, t, fullCtx)
            if reach is None:
                # if any configs in previous dipped into outer context, that
                # means that input up to t actually finished entry rule
                # at least for LL decision. Full LL doesn't dip into outer
                # so don't need special case.
                # We will get an error no matter what so delay until after
                # decision; better error message. Also, no reachable target
                # ATN states in SLL implies LL will also get nowhere.
                # If conflict in states that dip out, choose min since we
                # will get error no matter what.
                e = self.noViableAlt(input, outerContext, previous, startIndex)
                input.seek(startIndex)
                alt = self.getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previous, outerContext)
                if alt!=ATN.INVALID_ALT_NUMBER:
                    return alt
                else:
                    raise e

            altSubSets = PredictionMode.getConflictingAltSubsets(reach)
            if ParserATNSimulator.debug:
                print("LL altSubSets=" + str(altSubSets) + ", predict=" +
                      str(PredictionMode.getUniqueAlt(altSubSets)) + ", resolvesToJustOneViableAlt=" +
                      str(PredictionMode.resolvesToJustOneViableAlt(altSubSets)))

            reach.uniqueAlt = self.getUniqueAlt(reach)
            # unique prediction?
            if reach.uniqueAlt!=ATN.INVALID_ALT_NUMBER:
                predictedAlt = reach.uniqueAlt
                break
            elif self.predictionMode is not PredictionMode.LL_EXACT_AMBIG_DETECTION:
                predictedAlt = PredictionMode.resolvesToJustOneViableAlt(altSubSets)
                if predictedAlt != ATN.INVALID_ALT_NUMBER:
                    break
            else:
                # In exact ambiguity mode, we never try to terminate early.
                # Just keeps scarfing until we know what the conflict is
                if PredictionMode.allSubsetsConflict(altSubSets) and PredictionMode.allSubsetsEqual(altSubSets):
                    foundExactAmbig = True
                    predictedAlt = PredictionMode.getSingleViableAlt(altSubSets)
                    break
                # else there are multiple non-conflicting subsets or
                # we're not sure what the ambiguity is yet.
                # So, keep going.

            previous = reach
            if t != Token.EOF:
                input.consume()
                t = input.LA(1)

        # If the configuration set uniquely predicts an alternative,
        # without conflict, then we know that it's a full LL decision
        # not SLL.
        if reach.uniqueAlt != ATN.INVALID_ALT_NUMBER :
            self.reportContextSensitivity(dfa, predictedAlt, reach, startIndex, input.index)
            return predictedAlt

        # We do not check predicates here because we have checked them
        # on-the-fly when doing full context prediction.

        #
        # In non-exact ambiguity detection mode, we might	actually be able to
        # detect an exact ambiguity, but I'm not going to spend the cycles
        # needed to check. We only emit ambiguity warnings in exact ambiguity
        # mode.
        #
        # For example, we might know that we have conflicting configurations.
        # But, that does not mean that there is no way forward without a
        # conflict. It's possible to have nonconflicting alt subsets as in:

        # altSubSets=[{1, 2}, {1, 2}, {1}, {1, 2}]

        # from
        #
        #    [(17,1,[5 $]), (13,1,[5 10 $]), (21,1,[5 10 $]), (11,1,[$]),
        #     (13,2,[5 10 $]), (21,2,[5 10 $]), (11,2,[$])]
        #
        # In this case, (17,1,[5 $]) indicates there is some next sequence that
        # would resolve this without conflict to alternative 1. Any other viable
        # next sequence, however, is associated with a conflict.  We stop
        # looking for input because no amount of further lookahead will alter
        # the fact that we should predict alternative 1.  We just can't say for
        # sure that there is an ambiguity without looking further.

        self.reportAmbiguity(dfa, D, startIndex, input.index, foundExactAmbig, None, reach)

        return predictedAlt

    def computeReachSet(self, closure:ATNConfigSet, t:int, fullCtx:bool):
        if ParserATNSimulator.debug:
            print("in computeReachSet, starting closure: " + str(closure))

        if self.mergeCache is None:
            self.mergeCache = dict()

        intermediate = ATNConfigSet(fullCtx)

        # Configurations already in a rule stop state indicate reaching the end
        # of the decision rule (local context) or end of the start rule (full
        # context). Once reached, these configurations are never updated by a
        # closure operation, so they are handled separately for the performance
        # advantage of having a smaller intermediate set when calling closure.
        #
        # For full-context reach operations, separate handling is required to
        # ensure that the alternative matching the longest overall sequence is
        # chosen when multiple such configurations can match the input.

        skippedStopStates = None

        # First figure out where we can reach on input t
        for c in closure:
            if ParserATNSimulator.debug:
                print("testing " + self.getTokenName(t) + " at " + str(c))

            if isinstance(c.state, RuleStopState):
                if fullCtx or t == Token.EOF:
                    if skippedStopStates is None:
                        skippedStopStates = list()
                    skippedStopStates.append(c)
                continue

            for trans in c.state.transitions:
                target = self.getReachableTarget(trans, t)
                if target is not None:
                    intermediate.add(ATNConfig(state=target, config=c), self.mergeCache)

        # Now figure out where the reach operation can take us...

        reach = None

        # This block optimizes the reach operation for intermediate sets which
        # trivially indicate a termination state for the overall
        # adaptivePredict operation.
        #
        # The conditions assume that intermediate
        # contains all configurations relevant to the reach set, but this
        # condition is not true when one or more configurations have been
        # withheld in skippedStopStates, or when the current symbol is EOF.
        #
        if skippedStopStates is None and t!=Token.EOF:
            if len(intermediate)==1:
                # Don't pursue the closure if there is just one state.
                # It can only have one alternative; just add to result
                # Also don't pursue the closure if there is unique alternative
                # among the configurations.
                reach = intermediate
            elif self.getUniqueAlt(intermediate)!=ATN.INVALID_ALT_NUMBER:
                # Also don't pursue the closure if there is unique alternative
                # among the configurations.
                reach = intermediate

        # If the reach set could not be trivially determined, perform a closure
        # operation on the intermediate set to compute its initial value.
        #
        if reach is None:
            reach = ATNConfigSet(fullCtx)
            closureBusy = set()
            treatEofAsEpsilon = t == Token.EOF
            for c in intermediate:
                self.closure(c, reach, closureBusy, False, fullCtx, treatEofAsEpsilon)

        if t == Token.EOF:
            # After consuming EOF no additional input is possible, so we are
            # only interested in configurations which reached the end of the
            # decision rule (local context) or end of the start rule (full
            # context). Update reach to contain only these configurations. This
            # handles both explicit EOF transitions in the grammar and implicit
            # EOF transitions following the end of the decision or start rule.
            #
            # When reach==intermediate, no closure operation was performed. In
            # this case, removeAllConfigsNotInRuleStopState needs to check for
            # reachable rule stop states as well as configurations already in
            # a rule stop state.
            #
            # This is handled before the configurations in skippedStopStates,
            # because any configurations potentially added from that list are
            # already guaranteed to meet this condition whether or not it's
            # required.
            #
            reach = self.removeAllConfigsNotInRuleStopState(reach, reach is intermediate)

        # If skippedStopStates is not null, then it contains at least one
        # configuration. For full-context reach operations, these
        # configurations reached the end of the start rule, in which case we
        # only add them back to reach if no configuration during the current
        # closure operation reached such a state. This ensures adaptivePredict
        # chooses an alternative matching the longest overall sequence when
        # multiple alternatives are viable.
        #
        if skippedStopStates is not None and ( (not fullCtx) or (not PredictionMode.hasConfigInRuleStopState(reach))):
            for c in skippedStopStates:
                reach.add(c, self.mergeCache)
        if len(reach)==0:
            return None
        else:
            return reach

    #
    # Return a configuration set containing only the configurations from
    # {@code configs} which are in a {@link RuleStopState}. If all
    # configurations in {@code configs} are already in a rule stop state, this
    # method simply returns {@code configs}.
    #
    # <p>When {@code lookToEndOfRule} is true, this method uses
    # {@link ATN#nextTokens} for each configuration in {@code configs} which is
    # not already in a rule stop state to see if a rule stop state is reachable
    # from the configuration via epsilon-only transitions.</p>
    #
    # @param configs the configuration set to update
    # @param lookToEndOfRule when true, this method checks for rule stop states
    # reachable by epsilon-only transitions from each configuration in
    # {@code configs}.
    #
    # @return {@code configs} if all configurations in {@code configs} are in a
    # rule stop state, otherwise return a new configuration set containing only
    # the configurations from {@code configs} which are in a rule stop state
    #
    def removeAllConfigsNotInRuleStopState(self, configs:ATNConfigSet, lookToEndOfRule:bool):
        if PredictionMode.allConfigsInRuleStopStates(configs):
            return configs
        result = ATNConfigSet(configs.fullCtx)
        for config in configs:
            if isinstance(config.state, RuleStopState):
                result.add(config, self.mergeCache)
                continue
            if lookToEndOfRule and config.state.epsilonOnlyTransitions:
                nextTokens = self.atn.nextTokens(config.state)
                if Token.EPSILON in nextTokens:
                    endOfRuleState = self.atn.ruleToStopState[config.state.ruleIndex]
                    result.add(ATNConfig(state=endOfRuleState, config=config), self.mergeCache)
        return result

    def computeStartState(self, p:ATNState, ctx:RuleContext, fullCtx:bool):
        # always at least the implicit call to start rule
        initialContext = PredictionContextFromRuleContext(self.atn, ctx)
        configs = ATNConfigSet(fullCtx)

        for i in range(0, len(p.transitions)):
            target = p.transitions[i].target
            c = ATNConfig(target, i+1, initialContext)
            closureBusy = set()
            self.closure(c, configs, closureBusy, True, fullCtx, False)
        return configs

    #
    # This method transforms the start state computed by
    # {@link #computeStartState} to the special start state used by a
    # precedence DFA for a particular precedence value. The transformation
    # process applies the following changes to the start state's configuration
    # set.
    #
    # <ol>
    # <li>Evaluate the precedence predicates for each configuration using
    # {@link SemanticContext#evalPrecedence}.</li>
    # <li>Remove all configurations which predict an alternative greater than
    # 1, for which another configuration that predicts alternative 1 is in the
    # same ATN state with the same prediction context. This transformation is
    # valid for the following reasons:
    # <ul>
    # <li>The closure block cannot contain any epsilon transitions which bypass
    # the body of the closure, so all states reachable via alternative 1 are
    # part of the precedence alternatives of the transformed left-recursive
    # rule.</li>
    # <li>The "primary" portion of a left recursive rule cannot contain an
    # epsilon transition, so the only way an alternative other than 1 can exist
    # in a state that is also reachable via alternative 1 is by nesting calls
    # to the left-recursive rule, with the outer calls not being at the
    # preferred precedence level.</li>
    # </ul>
    # </li>
    # </ol>
    #
    # <p>
    # The prediction context must be considered by this filter to address
    # situations like the following.
    # </p>
    # <code>
    # <pre>
    # grammar TA;
    # prog: statement* EOF;
    # statement: letterA | statement letterA 'b' ;
    # letterA: 'a';
    # </pre>
    # </code>
    # <p>
    # If the above grammar, the ATN state immediately before the token
    # reference {@code 'a'} in {@code letterA} is reachable from the left edge
    # of both the primary and closure blocks of the left-recursive rule
    # {@code statement}. The prediction context associated with each of these
    # configurations distinguishes between them, and prevents the alternative
    # which stepped out to {@code prog} (and then back in to {@code statement}
    # from being eliminated by the filter.
    # </p>
    #
    # @param configs The configuration set computed by
    # {@link #computeStartState} as the start state for the DFA.
    # @return The transformed configuration set representing the start state
    # for a precedence DFA at a particular precedence level (determined by
    # calling {@link Parser#getPrecedence}).
    #
    def applyPrecedenceFilter(self, configs:ATNConfigSet):
        statesFromAlt1 = dict()
        configSet = ATNConfigSet(configs.fullCtx)
        for config in configs:
            # handle alt 1 first
            if config.alt != 1:
                continue
            updatedContext = config.semanticContext.evalPrecedence(self.parser, self._outerContext)
            if updatedContext is None:
                # the configuration was eliminated
                continue

            statesFromAlt1[config.state.stateNumber] = config.context
            if updatedContext is not config.semanticContext:
                configSet.add(ATNConfig(config=config, semantic=updatedContext), self.mergeCache)
            else:
                configSet.add(config, self.mergeCache)

        for config in configs:
            if config.alt == 1:
                # already handled
                continue

            # In the future, this elimination step could be updated to also
            # filter the prediction context for alternatives predicting alt>1
            # (basically a graph subtraction algorithm).
            #
            if not config.precedenceFilterSuppressed:
                context = statesFromAlt1.get(config.state.stateNumber, None)
                if context==config.context:
                    # eliminated
                    continue

            configSet.add(config, self.mergeCache)

        return configSet

    def getReachableTarget(self, trans:Transition, ttype:int):
        if trans.matches(ttype, 0, self.atn.maxTokenType):
            return trans.target
        else:
            return None

    def getPredsForAmbigAlts(self, ambigAlts:set, configs:ATNConfigSet, nalts:int):
        # REACH=[1|1|[]|0:0, 1|2|[]|0:1]
        # altToPred starts as an array of all null contexts. The entry at index i
        # corresponds to alternative i. altToPred[i] may have one of three values:
        #   1. null: no ATNConfig c is found such that c.alt==i
        #   2. SemanticContext.NONE: At least one ATNConfig c exists such that
        #      c.alt==i and c.semanticContext==SemanticContext.NONE. In other words,
        #      alt i has at least one unpredicated config.
        #   3. Non-NONE Semantic Context: There exists at least one, and for all
        #      ATNConfig c such that c.alt==i, c.semanticContext!=SemanticContext.NONE.
        #
        # From this, it is clear that NONE||anything==NONE.
        #
        altToPred = [None] * (nalts + 1)
        for c in configs:
            if c.alt in ambigAlts:
                altToPred[c.alt] = orContext(altToPred[c.alt], c.semanticContext)

        nPredAlts = 0
        for i in range(1, nalts+1):
            if altToPred[i] is None:
                altToPred[i] = SemanticContext.NONE
            elif altToPred[i] is not SemanticContext.NONE:
                nPredAlts += 1

        # nonambig alts are null in altToPred
        if nPredAlts==0:
            altToPred = None
        if ParserATNSimulator.debug:
            print("getPredsForAmbigAlts result " + str_list(altToPred))
        return altToPred

    def getPredicatePredictions(self, ambigAlts:set, altToPred:list):
        pairs = []
        containsPredicate = False
        for i in range(1, len(altToPred)):
            pred = altToPred[i]
            # unpredicated is indicated by SemanticContext.NONE
            if ambigAlts is not None and i in ambigAlts:
                pairs.append(PredPrediction(pred, i))
            if pred is not SemanticContext.NONE:
                containsPredicate = True

        if not containsPredicate:
            return None

        return pairs

    #
    # This method is used to improve the localization of error messages by
    # choosing an alternative rather than throwing a
    # {@link NoViableAltException} in particular prediction scenarios where the
    # {@link #ERROR} state was reached during ATN simulation.
    #
    # <p>
    # The default implementation of this method uses the following
    # algorithm to identify an ATN configuration which successfully parsed the
    # decision entry rule. Choosing such an alternative ensures that the
    # {@link ParserRuleContext} returned by the calling rule will be complete
    # and valid, and the syntax error will be reported later at a more
    # localized location.</p>
    #
    # <ul>
    # <li>If a syntactically valid path or paths reach the end of the decision rule and
    # they are semantically valid if predicated, return the min associated alt.</li>
    # <li>Else, if a semantically invalid but syntactically valid path exist
    # or paths exist, return the minimum associated alt.
    # </li>
    # <li>Otherwise, return {@link ATN#INVALID_ALT_NUMBER}.</li>
    # </ul>
    #
    # <p>
    # In some scenarios, the algorithm described above could predict an
    # alternative which will result in a {@link FailedPredicateException} in
    # the parser. Specifically, this could occur if the <em>only</em> configuration
    # capable of successfully parsing to the end of the decision rule is
    # blocked by a semantic predicate. By choosing this alternative within
    # {@link #adaptivePredict} instead of throwing a
    # {@link NoViableAltException}, the resulting
    # {@link FailedPredicateException} in the parser will identify the specific
    # predicate which is preventing the parser from successfully parsing the
    # decision rule, which helps developers identify and correct logic errors
    # in semantic predicates.
    # </p>
    #
    # @param configs The ATN configurations which were valid immediately before
    # the {@link #ERROR} state was reached
    # @param outerContext The is the \gamma_0 initial parser context from the paper
    # or the parser stack at the instant before prediction commences.
    #
    # @return The value to return from {@link #adaptivePredict}, or
    # {@link ATN#INVALID_ALT_NUMBER} if a suitable alternative was not
    # identified and {@link #adaptivePredict} should report an error instead.
    #
    def getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(self, configs:ATNConfigSet, outerContext:ParserRuleContext):
        semValidConfigs, semInvalidConfigs = self.splitAccordingToSemanticValidity(configs, outerContext)
        alt = self.getAltThatFinishedDecisionEntryRule(semValidConfigs)
        if alt!=ATN.INVALID_ALT_NUMBER: # semantically/syntactically viable path exists
            return alt
        # Is there a syntactically valid path with a failed pred?
        if len(semInvalidConfigs)>0:
            alt = self.getAltThatFinishedDecisionEntryRule(semInvalidConfigs)
            if alt!=ATN.INVALID_ALT_NUMBER: # syntactically viable path exists
                return alt
        return ATN.INVALID_ALT_NUMBER

    def getAltThatFinishedDecisionEntryRule(self, configs:ATNConfigSet):
        alts = set()
        for c in configs:
            if c.reachesIntoOuterContext>0 or (isinstance(c.state, RuleStopState) and c.context.hasEmptyPath() ):
                alts.add(c.alt)
        if len(alts)==0:
            return ATN.INVALID_ALT_NUMBER
        else:
            return min(alts)

    # Walk the list of configurations and split them according to
    #  those that have preds evaluating to true/false.  If no pred, assume
    #  true pred and include in succeeded set.  Returns Pair of sets.
    #
    #  Create a new set so as not to alter the incoming parameter.
    #
    #  Assumption: the input stream has been restored to the starting point
    #  prediction, which is where predicates need to evaluate.
    #
    def splitAccordingToSemanticValidity(self, configs:ATNConfigSet, outerContext:ParserRuleContext):
        succeeded = ATNConfigSet(configs.fullCtx)
        failed = ATNConfigSet(configs.fullCtx)
        for c in configs:
            if c.semanticContext is not SemanticContext.NONE:
                predicateEvaluationResult = c.semanticContext.eval(self.parser, outerContext)
                if predicateEvaluationResult:
                    succeeded.add(c)
                else:
                    failed.add(c)
            else:
                succeeded.add(c)
        return (succeeded,failed)

    # Look through a list of predicate/alt pairs, returning alts for the
    #  pairs that win. A {@code NONE} predicate indicates an alt containing an
    #  unpredicated config which behaves as "always true." If !complete
    #  then we stop at the first predicate that evaluates to true. This
    #  includes pairs with null predicates.
    #
    def evalSemanticContext(self, predPredictions:list, outerContext:ParserRuleContext, complete:bool):
        predictions = set()
        for pair in predPredictions:
            if pair.pred is SemanticContext.NONE:
                predictions.add(pair.alt)
                if not complete:
                    break
                continue
            predicateEvaluationResult = pair.pred.eval(self.parser, outerContext)
            if ParserATNSimulator.debug or ParserATNSimulator.dfa_debug:
                print("eval pred " + str(pair) + "=" + str(predicateEvaluationResult))

            if predicateEvaluationResult:
                if ParserATNSimulator.debug or ParserATNSimulator.dfa_debug:
                    print("PREDICT " + str(pair.alt))
                predictions.add(pair.alt)
                if not complete:
                    break
        return predictions


    # TODO: If we are doing predicates, there is no point in pursuing
    #     closure operations if we reach a DFA state that uniquely predicts
    #     alternative. We will not be caching that DFA state and it is a
    #     waste to pursue the closure. Might have to advance when we do
    #     ambig detection thought :(
    #

    def closure(self, config:ATNConfig, configs:ATNConfigSet, closureBusy:set, collectPredicates:bool, fullCtx:bool, treatEofAsEpsilon:bool):
        initialDepth = 0
        self.closureCheckingStopState(config, configs, closureBusy, collectPredicates,
                                 fullCtx, initialDepth, treatEofAsEpsilon)


    def closureCheckingStopState(self, config:ATNConfig, configs:ATNConfigSet, closureBusy:set, collectPredicates:bool, fullCtx:bool, depth:int, treatEofAsEpsilon:bool):
        if ParserATNSimulator.debug:
            print("closure(" + str(config) + ")")

        if isinstance(config.state, RuleStopState):
            # We hit rule end. If we have context info, use it
            # run thru all possible stack tops in ctx
            if not config.context.isEmpty():
                for i in range(0, len(config.context)):
                    state = config.context.getReturnState(i)
                    if state is PredictionContext.EMPTY_RETURN_STATE:
                        if fullCtx:
                            configs.add(ATNConfig(state=config.state, context=PredictionContext.EMPTY, config=config), self.mergeCache)
                            continue
                        else:
                            # we have no context info, just chase follow links (if greedy)
                            if ParserATNSimulator.debug:
                                print("FALLING off rule " + self.getRuleName(config.state.ruleIndex))
                            self.closure_(config, configs, closureBusy, collectPredicates,
                                     fullCtx, depth, treatEofAsEpsilon)
                        continue
                    returnState = self.atn.states[state]
                    newContext = config.context.getParent(i) # "pop" return state
                    c = ATNConfig(state=returnState, alt=config.alt, context=newContext, semantic=config.semanticContext)
                    # While we have context to pop back from, we may have
                    # gotten that context AFTER having falling off a rule.
                    # Make sure we track that we are now out of context.
                    c.reachesIntoOuterContext = config.reachesIntoOuterContext
                    self.closureCheckingStopState(c, configs, closureBusy, collectPredicates, fullCtx, depth - 1, treatEofAsEpsilon)
                return
            elif fullCtx:
                # reached end of start rule
                configs.add(config, self.mergeCache)
                return
            else:
                # else if we have no context info, just chase follow links (if greedy)
                if ParserATNSimulator.debug:
                    print("FALLING off rule " + self.getRuleName(config.state.ruleIndex))

        self.closure_(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEofAsEpsilon)

    # Do the actual work of walking epsilon edges#
    def closure_(self, config:ATNConfig, configs:ATNConfigSet, closureBusy:set, collectPredicates:bool, fullCtx:bool, depth:int, treatEofAsEpsilon:bool):
        p = config.state
        # optimization
        if not p.epsilonOnlyTransitions:
            configs.add(config, self.mergeCache)
            # make sure to not return here, because EOF transitions can act as
            # both epsilon transitions and non-epsilon transitions.

        first = True
        for t in p.transitions:
            if first:
                first = False
                if self.canDropLoopEntryEdgeInLeftRecursiveRule(config):
                    continue

            continueCollecting = collectPredicates and not isinstance(t, ActionTransition)
            c = self.getEpsilonTarget(config, t, continueCollecting, depth == 0, fullCtx, treatEofAsEpsilon)
            if c is not None:
                newDepth = depth
                if isinstance( config.state, RuleStopState):
                    # target fell off end of rule; mark resulting c as having dipped into outer context
                    # We can't get here if incoming config was rule stop and we had context
                    # track how far we dip into outer context.  Might
                    # come in handy and we avoid evaluating context dependent
                    # preds if this is > 0.
                    if self._dfa is not None and self._dfa.precedenceDfa:
                        if t.outermostPrecedenceReturn == self._dfa.atnStartState.ruleIndex:
                            c.precedenceFilterSuppressed = True
                    c.reachesIntoOuterContext += 1
                    if c in closureBusy:
                        # avoid infinite recursion for right-recursive rules
                        continue
                    closureBusy.add(c)
                    configs.dipsIntoOuterContext = True # TODO: can remove? only care when we add to set per middle of this method
                    newDepth -= 1
                    if ParserATNSimulator.debug:
                        print("dips into outer ctx: " + str(c))
                else:
                    if not t.isEpsilon:
                        if c in closureBusy:
                            # avoid infinite recursion for EOF* and EOF+
                            continue
                        closureBusy.add(c)
                    if isinstance(t, RuleTransition):
                        # latch when newDepth goes negative - once we step out of the entry context we can't return
                        if newDepth >= 0:
                            newDepth += 1

                self.closureCheckingStopState(c, configs, closureBusy, continueCollecting, fullCtx, newDepth, treatEofAsEpsilon)



    # Implements first-edge (loop entry) elimination as an optimization
    #  during closure operations.  See antlr/antlr4#1398.
    #
    # The optimization is to avoid adding the loop entry config when
    # the exit path can only lead back to the same
    # StarLoopEntryState after popping context at the rule end state
    # (traversing only epsilon edges, so we're still in closure, in
    # this same rule).
    #
    # We need to detect any state that can reach loop entry on
    # epsilon w/o exiting rule. We don't have to look at FOLLOW
    # links, just ensure that all stack tops for config refer to key
    # states in LR rule.
    #
    # To verify we are in the right situation we must first check
    # closure is at a StarLoopEntryState generated during LR removal.
    # Then we check that each stack top of context is a return state
    # from one of these cases:
    #
    #   1. 'not' expr, '(' type ')' expr. The return state points at loop entry state
    #   2. expr op expr. The return state is the block end of internal block of (...)*
    #   3. 'between' expr 'and' expr. The return state of 2nd expr reference.
    #      That state points at block end of internal block of (...)*.
    #   4. expr '?' expr ':' expr. The return state points at block end,
    #      which points at loop entry state.
    #
    # If any is true for each stack top, then closure does not add a
    # config to the current config set for edge[0], the loop entry branch.
    #
    #  Conditions fail if any context for the current config is:
    #
    #   a. empty (we'd fall out of expr to do a global FOLLOW which could
    #      even be to some weird spot in expr) or,
    #   b. lies outside of expr or,
    #   c. lies within expr but at a state not the BlockEndState
    #   generated during LR removal
    #
    # Do we need to evaluate predicates ever in closure for this case?
    #
    # No. Predicates, including precedence predicates, are only
    # evaluated when computing a DFA start state. I.e., only before
    # the lookahead (but not parser) consumes a token.
    #
    # There are no epsilon edges allowed in LR rule alt blocks or in
    # the "primary" part (ID here). If closure is in
    # StarLoopEntryState any lookahead operation will have consumed a
    # token as there are no epsilon-paths that lead to
    # StarLoopEntryState. We do not have to evaluate predicates
    # therefore if we are in the generated StarLoopEntryState of a LR
    # rule. Note that when making a prediction starting at that
    # decision point, decision d=2, compute-start-state performs
    # closure starting at edges[0], edges[1] emanating from
    # StarLoopEntryState. That means it is not performing closure on
    # StarLoopEntryState during compute-start-state.
    #
    # How do we know this always gives same prediction answer?
    #
    # Without predicates, loop entry and exit paths are ambiguous
    # upon remaining input +b (in, say, a+b). Either paths lead to
    # valid parses. Closure can lead to consuming + immediately or by
    # falling out of this call to expr back into expr and loop back
    # again to StarLoopEntryState to match +b. In this special case,
    # we choose the more efficient path, which is to take the bypass
    # path.
    #
    # The lookahead language has not changed because closure chooses
    # one path over the other. Both paths lead to consuming the same
    # remaining input during a lookahead operation. If the next token
    # is an operator, lookahead will enter the choice block with
    # operators. If it is not, lookahead will exit expr. Same as if
    # closure had chosen to enter the choice block immediately.
    #
    # Closure is examining one config (some loopentrystate, some alt,
    # context) which means it is considering exactly one alt. Closure
    # always copies the same alt to any derived configs.
    #
    # How do we know this optimization doesn't mess up precedence in
    # our parse trees?
    #
    # Looking through expr from left edge of stat only has to confirm
    # that an input, say, a+b+c; begins with any valid interpretation
    # of an expression. The precedence actually doesn't matter when
    # making a decision in stat seeing through expr. It is only when
    # parsing rule expr that we must use the precedence to get the
    # right interpretation and, hence, parse tree.
    #
    # @since 4.6
    #
    def canDropLoopEntryEdgeInLeftRecursiveRule(self, config):
        # return False
        p = config.state
        # First check to see if we are in StarLoopEntryState generated during
        # left-recursion elimination. For efficiency, also check if
        # the context has an empty stack case. If so, it would mean
        # global FOLLOW so we can't perform optimization
        # Are we the special loop entry/exit state? or SLL wildcard
        if p.stateType != ATNState.STAR_LOOP_ENTRY  \
                or not p.isPrecedenceDecision       \
                or config.context.isEmpty()         \
                or config.context.hasEmptyPath():
            return False

        # Require all return states to return back to the same rule
        # that p is in.
        numCtxs = len(config.context)
        for i in range(0, numCtxs):  # for each stack context
            returnState = self.atn.states[config.context.getReturnState(i)]
            if returnState.ruleIndex != p.ruleIndex:
                return False

        decisionStartState = p.transitions[0].target
        blockEndStateNum = decisionStartState.endState.stateNumber
        blockEndState = self.atn.states[blockEndStateNum]

        # Verify that the top of each stack context leads to loop entry/exit
        # state through epsilon edges and w/o leaving rule.
        for i in range(0, numCtxs):  # for each stack context
            returnStateNumber = config.context.getReturnState(i)
            returnState = self.atn.states[returnStateNumber]
            # all states must have single outgoing epsilon edge
            if len(returnState.transitions) != 1 or not returnState.transitions[0].isEpsilon:
                return False

            # Look for prefix op case like 'not expr', (' type ')' expr
            returnStateTarget = returnState.transitions[0].target
            if returnState.stateType == ATNState.BLOCK_END and returnStateTarget is p:
                continue

            # Look for 'expr op expr' or case where expr's return state is block end
            # of (...)* internal block; the block end points to loop back
            # which points to p but we don't need to check that
            if returnState is blockEndState:
                continue

            # Look for ternary expr ? expr : expr. The return state points at block end,
            # which points at loop entry state
            if returnStateTarget is blockEndState:
                continue

            # Look for complex prefix 'between expr and expr' case where 2nd expr's
            # return state points at block end state of (...)* internal block
            if returnStateTarget.stateType == ATNState.BLOCK_END \
                and len(returnStateTarget.transitions) == 1 \
                and returnStateTarget.transitions[0].isEpsilon \
                and returnStateTarget.transitions[0].target is p:
                    continue

            # anything else ain't conforming
            return False

        return True


    def getRuleName(self, index:int):
        if self.parser is not None and index>=0:
            return self.parser.ruleNames[index]
        else:
            return "<rule " + str(index) + ">"

    epsilonTargetMethods = dict()
    epsilonTargetMethods[Transition.RULE] = lambda sim, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon: \
        sim.ruleTransition(config, t)
    epsilonTargetMethods[Transition.PRECEDENCE] = lambda sim, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon: \
        sim.precedenceTransition(config, t, collectPredicates, inContext, fullCtx)
    epsilonTargetMethods[Transition.PREDICATE] = lambda sim, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon: \
        sim.predTransition(config, t, collectPredicates, inContext, fullCtx)
    epsilonTargetMethods[Transition.ACTION] = lambda sim, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon: \
        sim.actionTransition(config, t)
    epsilonTargetMethods[Transition.EPSILON] = lambda sim, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon: \
        ATNConfig(state=t.target, config=config)
    epsilonTargetMethods[Transition.ATOM] = lambda sim, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon: \
        ATNConfig(state=t.target, config=config) if treatEofAsEpsilon and t.matches(Token.EOF, 0, 1) else None
    epsilonTargetMethods[Transition.RANGE] = lambda sim, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon: \
        ATNConfig(state=t.target, config=config) if treatEofAsEpsilon and t.matches(Token.EOF, 0, 1) else None
    epsilonTargetMethods[Transition.SET] = lambda sim, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon: \
        ATNConfig(state=t.target, config=config) if treatEofAsEpsilon and t.matches(Token.EOF, 0, 1) else None

    def getEpsilonTarget(self, config:ATNConfig, t:Transition, collectPredicates:bool, inContext:bool, fullCtx:bool, treatEofAsEpsilon:bool):
        m = self.epsilonTargetMethods.get(t.serializationType, None)
        if m is None:
            return None
        else:
            return m(self, config, t, collectPredicates, inContext, fullCtx, treatEofAsEpsilon)

    def actionTransition(self, config:ATNConfig, t:ActionTransition):
        if ParserATNSimulator.debug:
            print("ACTION edge " + str(t.ruleIndex) + ":" + str(t.actionIndex))
        return ATNConfig(state=t.target, config=config)

    def precedenceTransition(self, config:ATNConfig, pt:PrecedencePredicateTransition,  collectPredicates:bool, inContext:bool, fullCtx:bool):
        if ParserATNSimulator.debug:
            print("PRED (collectPredicates=" + str(collectPredicates) + ") " +
                    str(pt.precedence) + ">=_p, ctx dependent=true")
            if self.parser is not None:
                print("context surrounding pred is " + str(self.parser.getRuleInvocationStack()))

        c = None
        if collectPredicates and inContext:
            if fullCtx:
                # In full context mode, we can evaluate predicates on-the-fly
                # during closure, which dramatically reduces the size of
                # the config sets. It also obviates the need to test predicates
                # later during conflict resolution.
                currentPosition = self._input.index
                self._input.seek(self._startIndex)
                predSucceeds = pt.getPredicate().eval(self.parser, self._outerContext)
                self._input.seek(currentPosition)
                if predSucceeds:
                    c = ATNConfig(state=pt.target, config=config) # no pred context
            else:
                newSemCtx = andContext(config.semanticContext, pt.getPredicate())
                c = ATNConfig(state=pt.target, semantic=newSemCtx, config=config)
        else:
            c = ATNConfig(state=pt.target, config=config)

        if ParserATNSimulator.debug:
            print("config from pred transition=" + str(c))
        return c

    def predTransition(self, config:ATNConfig, pt:PredicateTransition, collectPredicates:bool, inContext:bool, fullCtx:bool):
        if ParserATNSimulator.debug:
            print("PRED (collectPredicates=" + str(collectPredicates) + ") " + str(pt.ruleIndex) +
                    ":" + str(pt.predIndex) + ", ctx dependent=" + str(pt.isCtxDependent))
            if self.parser is not None:
                print("context surrounding pred is " + str(self.parser.getRuleInvocationStack()))

        c = None
        if collectPredicates and (not pt.isCtxDependent or (pt.isCtxDependent and inContext)):
            if fullCtx:
                # In full context mode, we can evaluate predicates on-the-fly
                # during closure, which dramatically reduces the size of
                # the config sets. It also obviates the need to test predicates
                # later during conflict resolution.
                currentPosition = self._input.index
                self._input.seek(self._startIndex)
                predSucceeds = pt.getPredicate().eval(self.parser, self._outerContext)
                self._input.seek(currentPosition)
                if predSucceeds:
                    c = ATNConfig(state=pt.target, config=config) # no pred context
            else:
                newSemCtx = andContext(config.semanticContext, pt.getPredicate())
                c = ATNConfig(state=pt.target, semantic=newSemCtx, config=config)
        else:
            c = ATNConfig(state=pt.target, config=config)

        if ParserATNSimulator.debug:
            print("config from pred transition=" + str(c))
        return c

    def ruleTransition(self, config:ATNConfig, t:RuleTransition):
        if ParserATNSimulator.debug:
            print("CALL rule " + self.getRuleName(t.target.ruleIndex) + ", ctx=" + str(config.context))
        returnState = t.followState
        newContext = SingletonPredictionContext.create(config.context, returnState.stateNumber)
        return ATNConfig(state=t.target, context=newContext, config=config )

    def getConflictingAlts(self, configs:ATNConfigSet):
        altsets = PredictionMode.getConflictingAltSubsets(configs)
        return PredictionMode.getAlts(altsets)

     # Sam pointed out a problem with the previous definition, v3, of
     # ambiguous states. If we have another state associated with conflicting
     # alternatives, we should keep going. For example, the following grammar
     #
     # s : (ID | ID ID?) ';' ;
     #
     # When the ATN simulation reaches the state before ';', it has a DFA
     # state that looks like: [12|1|[], 6|2|[], 12|2|[]]. Naturally
     # 12|1|[] and 12|2|[] conflict, but we cannot stop processing this node
     # because alternative to has another way to continue, via [6|2|[]].
     # The key is that we have a single state that has config's only associated
     # with a single alternative, 2, and crucially the state transitions
     # among the configurations are all non-epsilon transitions. That means
     # we don't consider any conflicts that include alternative 2. So, we
     # ignore the conflict between alts 1 and 2. We ignore a set of
     # conflicting alts when there is an intersection with an alternative
     # associated with a single alt state in the state&rarr;config-list map.
     #
     # It's also the case that we might have two conflicting configurations but
     # also a 3rd nonconflicting configuration for a different alternative:
     # [1|1|[], 1|2|[], 8|3|[]]. This can come about from grammar:
     #
     # a : A | A | A B ;
     #
     # After matching input A, we reach the stop state for rule A, state 1.
     # State 8 is the state right before B. Clearly alternatives 1 and 2
     # conflict and no amount of further lookahead will separate the two.
     # However, alternative 3 will be able to continue and so we do not
     # stop working on this state. In the previous example, we're concerned
     # with states associated with the conflicting alternatives. Here alt
     # 3 is not associated with the conflicting configs, but since we can continue
     # looking for input reasonably, I don't declare the state done. We
     # ignore a set of conflicting alts when we have an alternative
     # that we still need to pursue.
    #

    def getConflictingAltsOrUniqueAlt(self, configs:ATNConfigSet):
        conflictingAlts = None
        if configs.uniqueAlt!= ATN.INVALID_ALT_NUMBER:
            conflictingAlts = set()
            conflictingAlts.add(configs.uniqueAlt)
        else:
            conflictingAlts = configs.conflictingAlts
        return conflictingAlts

    def getTokenName(self, t:int):
        if t==Token.EOF:
            return "EOF"
        if self.parser is not None and \
            self.parser.literalNames is not None and \
            t < len(self.parser.literalNames):
                 return self.parser.literalNames[t] + "<" + str(t) + ">"
        else:
            return str(t)

    def getLookaheadName(self, input:TokenStream):
        return self.getTokenName(input.LA(1))

    # Used for debugging in adaptivePredict around execATN but I cut
    #  it out for clarity now that alg. works well. We can leave this
    #  "dead" code for a bit.
    #
    def dumpDeadEndConfigs(self, nvae:NoViableAltException):
        print("dead end configs: ")
        for c in nvae.getDeadEndConfigs():
            trans = "no edges"
            if len(c.state.transitions)>0:
                t = c.state.transitions[0]
                if isinstance(t, AtomTransition):
                    trans = "Atom "+ self.getTokenName(t.label)
                elif isinstance(t, SetTransition):
                    neg = isinstance(t, NotSetTransition)
                    trans = ("~" if neg else "")+"Set "+ str(t.set)
            print(c.toString(self.parser, True) + ":" + trans, file=sys.stderr)

    def noViableAlt(self, input:TokenStream, outerContext:ParserRuleContext, configs:ATNConfigSet, startIndex:int):
        return NoViableAltException(self.parser, input, input.get(startIndex), input.LT(1), configs, outerContext)

    def getUniqueAlt(self, configs:ATNConfigSet):
        alt = ATN.INVALID_ALT_NUMBER
        for c in configs:
            if alt == ATN.INVALID_ALT_NUMBER:
                alt = c.alt # found first alt
            elif c.alt!=alt:
                return ATN.INVALID_ALT_NUMBER
        return alt

    #
    # Add an edge to the DFA, if possible. This method calls
    # {@link #addDFAState} to ensure the {@code to} state is present in the
    # DFA. If {@code from} is {@code null}, or if {@code t} is outside the
    # range of edges that can be represented in the DFA tables, this method
    # returns without adding the edge to the DFA.
    #
    # <p>If {@code to} is {@code null}, this method returns {@code null}.
    # Otherwise, this method returns the {@link DFAState} returned by calling
    # {@link #addDFAState} for the {@code to} state.</p>
    #
    # @param dfa The DFA
    # @param from The source state for the edge
    # @param t The input symbol
    # @param to The target state for the edge
    #
    # @return If {@code to} is {@code null}, this method returns {@code null};
    # otherwise this method returns the result of calling {@link #addDFAState}
    # on {@code to}
    #
    def addDFAEdge(self, dfa:DFA, from_:DFAState, t:int, to:DFAState):
        if ParserATNSimulator.debug:
            print("EDGE " + str(from_) + " -> " + str(to) + " upon " + self.getTokenName(t))

        if to is None:
            return None

        to = self.addDFAState(dfa, to) # used existing if possible not incoming
        if from_ is None or t < -1 or t > self.atn.maxTokenType:
            return to

        if from_.edges is None:
            from_.edges = [None] * (self.atn.maxTokenType + 2)
        from_.edges[t+1] = to # connect

        if ParserATNSimulator.debug:
            names = None if self.parser is None else self.parser.literalNames
            print("DFA=\n" + dfa.toString(names))

        return to

    #
    # Add state {@code D} to the DFA if it is not already present, and return
    # the actual instance stored in the DFA. If a state equivalent to {@code D}
    # is already in the DFA, the existing state is returned. Otherwise this
    # method returns {@code D} after adding it to the DFA.
    #
    # <p>If {@code D} is {@link #ERROR}, this method returns {@link #ERROR} and
    # does not change the DFA.</p>
    #
    # @param dfa The dfa
    # @param D The DFA state to add
    # @return The state stored in the DFA. This will be either the existing
    # state if {@code D} is already in the DFA, or {@code D} itself if the
    # state was not already present.
    #
    def addDFAState(self, dfa:DFA, D:DFAState):
        if D is self.ERROR:
            return D


        existing = dfa.states.get(D, None)
        if existing is not None:
            return existing

        D.stateNumber = len(dfa.states)
        if not D.configs.readonly:
            D.configs.optimizeConfigs(self)
            D.configs.setReadonly(True)
        dfa.states[D] = D
        if ParserATNSimulator.debug:
            print("adding new DFA state: " + str(D))
        return D

    def reportAttemptingFullContext(self, dfa:DFA, conflictingAlts:set, configs:ATNConfigSet, startIndex:int, stopIndex:int):
        if ParserATNSimulator.debug or ParserATNSimulator.retry_debug:
            print("reportAttemptingFullContext decision=" + str(dfa.decision) + ":" + str(configs) +
                               ", input=" + self.parser.getTokenStream().getText(startIndex, stopIndex))
        if self.parser is not None:
            self.parser.getErrorListenerDispatch().reportAttemptingFullContext(self.parser, dfa, startIndex, stopIndex, conflictingAlts, configs)

    def reportContextSensitivity(self, dfa:DFA, prediction:int, configs:ATNConfigSet, startIndex:int, stopIndex:int):
        if ParserATNSimulator.debug or ParserATNSimulator.retry_debug:
            print("reportContextSensitivity decision=" + str(dfa.decision) + ":" + str(configs) +
                               ", input=" + self.parser.getTokenStream().getText(startIndex, stopIndex))
        if self.parser is not None:
            self.parser.getErrorListenerDispatch().reportContextSensitivity(self.parser, dfa, startIndex, stopIndex, prediction, configs)

    # If context sensitive parsing, we know it's ambiguity not conflict#
    def reportAmbiguity(self, dfa:DFA, D:DFAState, startIndex:int, stopIndex:int,
                                   exact:bool, ambigAlts:set, configs:ATNConfigSet ):
        if ParserATNSimulator.debug or ParserATNSimulator.retry_debug:
#			ParserATNPathFinder finder = new ParserATNPathFinder(parser, atn);
#			int i = 1;
#			for (Transition t : dfa.atnStartState.transitions) {
#				print("ALT "+i+"=");
#				print(startIndex+".."+stopIndex+", len(input)="+parser.getInputStream().size());
#				TraceTree path = finder.trace(t.target, parser.getContext(), (TokenStream)parser.getInputStream(),
#											  startIndex, stopIndex);
#				if ( path!=null ) {
#					print("path = "+path.toStringTree());
#					for (TraceTree leaf : path.leaves) {
#						List<ATNState> states = path.getPathToNode(leaf);
#						print("states="+states);
#					}
#				}
#				i++;
#			}
            print("reportAmbiguity " + str(ambigAlts) + ":" + str(configs) +
                               ", input=" + self.parser.getTokenStream().getText(startIndex, stopIndex))
        if self.parser is not None:
            self.parser.getErrorListenerDispatch().reportAmbiguity(self.parser, dfa, startIndex, stopIndex, exact, ambigAlts, configs)