Spaces:
Runtime error
Runtime error
File size: 14,684 Bytes
8a6cf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
from __future__ import annotations
import hashlib
import json
import random
import sys
from collections.abc import MutableMapping, Sequence
from functools import partial
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
Callable,
Literal,
TypedDict,
TypeVar,
Union,
overload,
)
import narwhals.stable.v1 as nw
from narwhals.stable.v1.dependencies import is_pandas_dataframe
from narwhals.stable.v1.typing import IntoDataFrame
from ._importers import import_pyarrow_interchange
from .core import (
DataFrameLike,
sanitize_geo_interface,
sanitize_narwhals_dataframe,
sanitize_pandas_dataframe,
to_eager_narwhals_dataframe,
)
from .plugin_registry import PluginRegistry
if sys.version_info >= (3, 13):
from typing import Protocol, runtime_checkable
else:
from typing_extensions import Protocol, runtime_checkable
if sys.version_info >= (3, 10):
from typing import Concatenate, ParamSpec
else:
from typing_extensions import Concatenate, ParamSpec
if TYPE_CHECKING:
if sys.version_info >= (3, 13):
from typing import TypeIs
else:
from typing_extensions import TypeIs
if sys.version_info >= (3, 10):
from typing import TypeAlias
else:
from typing_extensions import TypeAlias
import pandas as pd
import pyarrow as pa
@runtime_checkable
class SupportsGeoInterface(Protocol):
__geo_interface__: MutableMapping
DataType: TypeAlias = Union[
dict[Any, Any], IntoDataFrame, SupportsGeoInterface, DataFrameLike
]
TDataType = TypeVar("TDataType", bound=DataType)
TIntoDataFrame = TypeVar("TIntoDataFrame", bound=IntoDataFrame)
VegaLiteDataDict: TypeAlias = dict[
str, Union[str, dict[Any, Any], list[dict[Any, Any]]]
]
ToValuesReturnType: TypeAlias = dict[str, Union[dict[Any, Any], list[dict[Any, Any]]]]
SampleReturnType = Union[IntoDataFrame, dict[str, Sequence], None]
def is_data_type(obj: Any) -> TypeIs[DataType]:
return isinstance(obj, (dict, SupportsGeoInterface)) or isinstance(
nw.from_native(obj, eager_or_interchange_only=True, pass_through=True),
nw.DataFrame,
)
# ==============================================================================
# Data transformer registry
#
# A data transformer is a callable that takes a supported data type and returns
# a transformed dictionary version of it which is compatible with the VegaLite schema.
# The dict objects will be the Data portion of the VegaLite schema.
#
# Renderers only deal with the dict form of a
# VegaLite spec, after the Data model has been put into a schema compliant
# form.
# ==============================================================================
P = ParamSpec("P")
# NOTE: `Any` required due to the complexity of existing signatures imported in `altair.vegalite.v5.data.py`
R = TypeVar("R", VegaLiteDataDict, Any)
DataTransformerType = Callable[Concatenate[DataType, P], R]
class DataTransformerRegistry(PluginRegistry[DataTransformerType, R]):
_global_settings = {"consolidate_datasets": True}
@property
def consolidate_datasets(self) -> bool:
return self._global_settings["consolidate_datasets"]
@consolidate_datasets.setter
def consolidate_datasets(self, value: bool) -> None:
self._global_settings["consolidate_datasets"] = value
# ==============================================================================
class MaxRowsError(Exception):
"""Raised when a data model has too many rows."""
@overload
def limit_rows(data: None = ..., max_rows: int | None = ...) -> partial: ...
@overload
def limit_rows(data: DataType, max_rows: int | None = ...) -> DataType: ...
def limit_rows(
data: DataType | None = None, max_rows: int | None = 5000
) -> partial | DataType:
"""
Raise MaxRowsError if the data model has more than max_rows.
If max_rows is None, then do not perform any check.
"""
if data is None:
return partial(limit_rows, max_rows=max_rows)
check_data_type(data)
def raise_max_rows_error():
msg = (
"The number of rows in your dataset is greater "
f"than the maximum allowed ({max_rows}).\n\n"
"Try enabling the VegaFusion data transformer which "
"raises this limit by pre-evaluating data\n"
"transformations in Python.\n"
" >> import altair as alt\n"
' >> alt.data_transformers.enable("vegafusion")\n\n'
"Or, see https://altair-viz.github.io/user_guide/large_datasets.html "
"for additional information\n"
"on how to plot large datasets."
)
raise MaxRowsError(msg)
if isinstance(data, SupportsGeoInterface):
if data.__geo_interface__["type"] == "FeatureCollection":
values = data.__geo_interface__["features"]
else:
values = data.__geo_interface__
elif isinstance(data, dict):
if "values" in data:
values = data["values"]
else:
return data
else:
data = to_eager_narwhals_dataframe(data)
values = data
if max_rows is not None and len(values) > max_rows:
raise_max_rows_error()
return data
@overload
def sample(
data: None = ..., n: int | None = ..., frac: float | None = ...
) -> partial: ...
@overload
def sample(
data: TIntoDataFrame, n: int | None = ..., frac: float | None = ...
) -> TIntoDataFrame: ...
@overload
def sample(
data: DataType, n: int | None = ..., frac: float | None = ...
) -> SampleReturnType: ...
def sample(
data: DataType | None = None,
n: int | None = None,
frac: float | None = None,
) -> partial | SampleReturnType:
"""Reduce the size of the data model by sampling without replacement."""
if data is None:
return partial(sample, n=n, frac=frac)
check_data_type(data)
if is_pandas_dataframe(data):
return data.sample(n=n, frac=frac)
elif isinstance(data, dict):
if "values" in data:
values = data["values"]
if not n:
if frac is None:
msg = "frac cannot be None if n is None and data is a dictionary"
raise ValueError(msg)
n = int(frac * len(values))
values = random.sample(values, n)
return {"values": values}
else:
# Maybe this should raise an error or return something useful?
return None
data = nw.from_native(data, eager_only=True)
if not n:
if frac is None:
msg = "frac cannot be None if n is None with this data input type"
raise ValueError(msg)
n = int(frac * len(data))
indices = random.sample(range(len(data)), n)
return data[indices].to_native()
_FormatType = Literal["csv", "json"]
class _FormatDict(TypedDict):
type: _FormatType
class _ToFormatReturnUrlDict(TypedDict):
url: str
format: _FormatDict
@overload
def to_json(
data: None = ...,
prefix: str = ...,
extension: str = ...,
filename: str = ...,
urlpath: str = ...,
) -> partial: ...
@overload
def to_json(
data: DataType,
prefix: str = ...,
extension: str = ...,
filename: str = ...,
urlpath: str = ...,
) -> _ToFormatReturnUrlDict: ...
def to_json(
data: DataType | None = None,
prefix: str = "altair-data",
extension: str = "json",
filename: str = "{prefix}-{hash}.{extension}",
urlpath: str = "",
) -> partial | _ToFormatReturnUrlDict:
"""Write the data model to a .json file and return a url based data model."""
kwds = _to_text_kwds(prefix, extension, filename, urlpath)
if data is None:
return partial(to_json, **kwds)
else:
data_str = _data_to_json_string(data)
return _to_text(data_str, **kwds, format=_FormatDict(type="json"))
@overload
def to_csv(
data: None = ...,
prefix: str = ...,
extension: str = ...,
filename: str = ...,
urlpath: str = ...,
) -> partial: ...
@overload
def to_csv(
data: dict | pd.DataFrame | DataFrameLike,
prefix: str = ...,
extension: str = ...,
filename: str = ...,
urlpath: str = ...,
) -> _ToFormatReturnUrlDict: ...
def to_csv(
data: dict | pd.DataFrame | DataFrameLike | None = None,
prefix: str = "altair-data",
extension: str = "csv",
filename: str = "{prefix}-{hash}.{extension}",
urlpath: str = "",
) -> partial | _ToFormatReturnUrlDict:
"""Write the data model to a .csv file and return a url based data model."""
kwds = _to_text_kwds(prefix, extension, filename, urlpath)
if data is None:
return partial(to_csv, **kwds)
else:
data_str = _data_to_csv_string(data)
return _to_text(data_str, **kwds, format=_FormatDict(type="csv"))
def _to_text(
data: str,
prefix: str,
extension: str,
filename: str,
urlpath: str,
format: _FormatDict,
) -> _ToFormatReturnUrlDict:
data_hash = _compute_data_hash(data)
filename = filename.format(prefix=prefix, hash=data_hash, extension=extension)
Path(filename).write_text(data, encoding="utf-8")
url = str(Path(urlpath, filename))
return _ToFormatReturnUrlDict({"url": url, "format": format})
def _to_text_kwds(prefix: str, extension: str, filename: str, urlpath: str, /) -> dict[str, str]: # fmt: skip
return {"prefix": prefix, "extension": extension, "filename": filename, "urlpath": urlpath} # fmt: skip
def to_values(data: DataType) -> ToValuesReturnType:
"""Replace a DataFrame by a data model with values."""
check_data_type(data)
# `pass_through=True` passes `data` through as-is if it is not a Narwhals object.
data_native = nw.to_native(data, pass_through=True)
if isinstance(data_native, SupportsGeoInterface):
return {"values": _from_geo_interface(data_native)}
elif is_pandas_dataframe(data_native):
data_native = sanitize_pandas_dataframe(data_native)
return {"values": data_native.to_dict(orient="records")}
elif isinstance(data_native, dict):
if "values" not in data_native:
msg = "values expected in data dict, but not present."
raise KeyError(msg)
return data_native
elif isinstance(data, nw.DataFrame):
data = sanitize_narwhals_dataframe(data)
return {"values": data.rows(named=True)}
else:
# Should never reach this state as tested by check_data_type
msg = f"Unrecognized data type: {type(data)}"
raise ValueError(msg)
def check_data_type(data: DataType) -> None:
if not is_data_type(data):
msg = f"Expected dict, DataFrame or a __geo_interface__ attribute, got: {type(data)}"
raise TypeError(msg)
# ==============================================================================
# Private utilities
# ==============================================================================
def _compute_data_hash(data_str: str) -> str:
return hashlib.sha256(data_str.encode()).hexdigest()[:32]
def _from_geo_interface(data: SupportsGeoInterface | Any) -> dict[str, Any]:
"""
Santize a ``__geo_interface__`` w/ pre-santize step for ``pandas`` if needed.
Notes
-----
Split out to resolve typing issues related to:
- Intersection types
- ``typing.TypeGuard``
- ``pd.DataFrame.__getattr__``
"""
if is_pandas_dataframe(data):
data = sanitize_pandas_dataframe(data)
return sanitize_geo_interface(data.__geo_interface__)
def _data_to_json_string(data: DataType) -> str:
"""Return a JSON string representation of the input data."""
check_data_type(data)
if isinstance(data, SupportsGeoInterface):
return json.dumps(_from_geo_interface(data))
elif is_pandas_dataframe(data):
data = sanitize_pandas_dataframe(data)
return data.to_json(orient="records", double_precision=15)
elif isinstance(data, dict):
if "values" not in data:
msg = "values expected in data dict, but not present."
raise KeyError(msg)
return json.dumps(data["values"], sort_keys=True)
try:
data_nw = nw.from_native(data, eager_only=True)
except TypeError as exc:
msg = "to_json only works with data expressed as a DataFrame or as a dict"
raise NotImplementedError(msg) from exc
data_nw = sanitize_narwhals_dataframe(data_nw)
return json.dumps(data_nw.rows(named=True))
def _data_to_csv_string(data: DataType) -> str:
"""Return a CSV string representation of the input data."""
check_data_type(data)
if isinstance(data, SupportsGeoInterface):
msg = (
f"to_csv does not yet work with data that "
f"is of type {type(SupportsGeoInterface).__name__!r}.\n"
f"See https://github.com/vega/altair/issues/3441"
)
raise NotImplementedError(msg)
elif is_pandas_dataframe(data):
data = sanitize_pandas_dataframe(data)
return data.to_csv(index=False)
elif isinstance(data, dict):
if "values" not in data:
msg = "values expected in data dict, but not present"
raise KeyError(msg)
try:
import pandas as pd
except ImportError as exc:
msg = "pandas is required to convert a dict to a CSV string"
raise ImportError(msg) from exc
return pd.DataFrame.from_dict(data["values"]).to_csv(index=False)
try:
data_nw = nw.from_native(data, eager_only=True)
except TypeError as exc:
msg = "to_csv only works with data expressed as a DataFrame or as a dict"
raise NotImplementedError(msg) from exc
return data_nw.write_csv()
def arrow_table_from_dfi_dataframe(dfi_df: DataFrameLike) -> pa.Table:
"""Convert a DataFrame Interchange Protocol compatible object to an Arrow Table."""
import pyarrow as pa
# First check if the dataframe object has a method to convert to arrow.
# Give this preference over the pyarrow from_dataframe function since the object
# has more control over the conversion, and may have broader compatibility.
# This is the case for Polars, which supports Date32 columns in direct conversion
# while pyarrow does not yet support this type in from_dataframe
for convert_method_name in ("arrow", "to_arrow", "to_arrow_table", "to_pyarrow"):
convert_method = getattr(dfi_df, convert_method_name, None)
if callable(convert_method):
result = convert_method()
if isinstance(result, pa.Table):
return result
pi = import_pyarrow_interchange()
return pi.from_dataframe(dfi_df)
|