File size: 14,684 Bytes
8a6cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
from __future__ import annotations

import hashlib
import json
import random
import sys
from collections.abc import MutableMapping, Sequence
from functools import partial
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Literal,
    TypedDict,
    TypeVar,
    Union,
    overload,
)

import narwhals.stable.v1 as nw
from narwhals.stable.v1.dependencies import is_pandas_dataframe
from narwhals.stable.v1.typing import IntoDataFrame

from ._importers import import_pyarrow_interchange
from .core import (
    DataFrameLike,
    sanitize_geo_interface,
    sanitize_narwhals_dataframe,
    sanitize_pandas_dataframe,
    to_eager_narwhals_dataframe,
)
from .plugin_registry import PluginRegistry

if sys.version_info >= (3, 13):
    from typing import Protocol, runtime_checkable
else:
    from typing_extensions import Protocol, runtime_checkable
if sys.version_info >= (3, 10):
    from typing import Concatenate, ParamSpec
else:
    from typing_extensions import Concatenate, ParamSpec

if TYPE_CHECKING:
    if sys.version_info >= (3, 13):
        from typing import TypeIs
    else:
        from typing_extensions import TypeIs

    if sys.version_info >= (3, 10):
        from typing import TypeAlias
    else:
        from typing_extensions import TypeAlias
    import pandas as pd
    import pyarrow as pa


@runtime_checkable
class SupportsGeoInterface(Protocol):
    __geo_interface__: MutableMapping


DataType: TypeAlias = Union[
    dict[Any, Any], IntoDataFrame, SupportsGeoInterface, DataFrameLike
]

TDataType = TypeVar("TDataType", bound=DataType)
TIntoDataFrame = TypeVar("TIntoDataFrame", bound=IntoDataFrame)

VegaLiteDataDict: TypeAlias = dict[
    str, Union[str, dict[Any, Any], list[dict[Any, Any]]]
]
ToValuesReturnType: TypeAlias = dict[str, Union[dict[Any, Any], list[dict[Any, Any]]]]
SampleReturnType = Union[IntoDataFrame, dict[str, Sequence], None]


def is_data_type(obj: Any) -> TypeIs[DataType]:
    return isinstance(obj, (dict, SupportsGeoInterface)) or isinstance(
        nw.from_native(obj, eager_or_interchange_only=True, pass_through=True),
        nw.DataFrame,
    )


# ==============================================================================
# Data transformer registry
#
# A data transformer is a callable that takes a supported data type and returns
# a transformed dictionary version of it which is compatible with the VegaLite schema.
# The dict objects will be the Data portion of the VegaLite schema.
#
# Renderers only deal with the dict form of a
# VegaLite spec, after the Data model has been put into a schema compliant
# form.
# ==============================================================================

P = ParamSpec("P")
# NOTE: `Any` required due to the complexity of existing signatures imported in `altair.vegalite.v5.data.py`
R = TypeVar("R", VegaLiteDataDict, Any)
DataTransformerType = Callable[Concatenate[DataType, P], R]


class DataTransformerRegistry(PluginRegistry[DataTransformerType, R]):
    _global_settings = {"consolidate_datasets": True}

    @property
    def consolidate_datasets(self) -> bool:
        return self._global_settings["consolidate_datasets"]

    @consolidate_datasets.setter
    def consolidate_datasets(self, value: bool) -> None:
        self._global_settings["consolidate_datasets"] = value


# ==============================================================================
class MaxRowsError(Exception):
    """Raised when a data model has too many rows."""


@overload
def limit_rows(data: None = ..., max_rows: int | None = ...) -> partial: ...
@overload
def limit_rows(data: DataType, max_rows: int | None = ...) -> DataType: ...
def limit_rows(
    data: DataType | None = None, max_rows: int | None = 5000
) -> partial | DataType:
    """
    Raise MaxRowsError if the data model has more than max_rows.

    If max_rows is None, then do not perform any check.
    """
    if data is None:
        return partial(limit_rows, max_rows=max_rows)
    check_data_type(data)

    def raise_max_rows_error():
        msg = (
            "The number of rows in your dataset is greater "
            f"than the maximum allowed ({max_rows}).\n\n"
            "Try enabling the VegaFusion data transformer which "
            "raises this limit by pre-evaluating data\n"
            "transformations in Python.\n"
            "    >> import altair as alt\n"
            '    >> alt.data_transformers.enable("vegafusion")\n\n'
            "Or, see https://altair-viz.github.io/user_guide/large_datasets.html "
            "for additional information\n"
            "on how to plot large datasets."
        )
        raise MaxRowsError(msg)

    if isinstance(data, SupportsGeoInterface):
        if data.__geo_interface__["type"] == "FeatureCollection":
            values = data.__geo_interface__["features"]
        else:
            values = data.__geo_interface__
    elif isinstance(data, dict):
        if "values" in data:
            values = data["values"]
        else:
            return data
    else:
        data = to_eager_narwhals_dataframe(data)
        values = data

    if max_rows is not None and len(values) > max_rows:
        raise_max_rows_error()

    return data


@overload
def sample(
    data: None = ..., n: int | None = ..., frac: float | None = ...
) -> partial: ...
@overload
def sample(
    data: TIntoDataFrame, n: int | None = ..., frac: float | None = ...
) -> TIntoDataFrame: ...
@overload
def sample(
    data: DataType, n: int | None = ..., frac: float | None = ...
) -> SampleReturnType: ...
def sample(
    data: DataType | None = None,
    n: int | None = None,
    frac: float | None = None,
) -> partial | SampleReturnType:
    """Reduce the size of the data model by sampling without replacement."""
    if data is None:
        return partial(sample, n=n, frac=frac)
    check_data_type(data)
    if is_pandas_dataframe(data):
        return data.sample(n=n, frac=frac)
    elif isinstance(data, dict):
        if "values" in data:
            values = data["values"]
            if not n:
                if frac is None:
                    msg = "frac cannot be None if n is None and data is a dictionary"
                    raise ValueError(msg)
                n = int(frac * len(values))
            values = random.sample(values, n)
            return {"values": values}
        else:
            # Maybe this should raise an error or return something useful?
            return None
    data = nw.from_native(data, eager_only=True)
    if not n:
        if frac is None:
            msg = "frac cannot be None if n is None with this data input type"
            raise ValueError(msg)
        n = int(frac * len(data))
    indices = random.sample(range(len(data)), n)
    return data[indices].to_native()


_FormatType = Literal["csv", "json"]


class _FormatDict(TypedDict):
    type: _FormatType


class _ToFormatReturnUrlDict(TypedDict):
    url: str
    format: _FormatDict


@overload
def to_json(
    data: None = ...,
    prefix: str = ...,
    extension: str = ...,
    filename: str = ...,
    urlpath: str = ...,
) -> partial: ...


@overload
def to_json(
    data: DataType,
    prefix: str = ...,
    extension: str = ...,
    filename: str = ...,
    urlpath: str = ...,
) -> _ToFormatReturnUrlDict: ...


def to_json(
    data: DataType | None = None,
    prefix: str = "altair-data",
    extension: str = "json",
    filename: str = "{prefix}-{hash}.{extension}",
    urlpath: str = "",
) -> partial | _ToFormatReturnUrlDict:
    """Write the data model to a .json file and return a url based data model."""
    kwds = _to_text_kwds(prefix, extension, filename, urlpath)
    if data is None:
        return partial(to_json, **kwds)
    else:
        data_str = _data_to_json_string(data)
        return _to_text(data_str, **kwds, format=_FormatDict(type="json"))


@overload
def to_csv(
    data: None = ...,
    prefix: str = ...,
    extension: str = ...,
    filename: str = ...,
    urlpath: str = ...,
) -> partial: ...


@overload
def to_csv(
    data: dict | pd.DataFrame | DataFrameLike,
    prefix: str = ...,
    extension: str = ...,
    filename: str = ...,
    urlpath: str = ...,
) -> _ToFormatReturnUrlDict: ...


def to_csv(
    data: dict | pd.DataFrame | DataFrameLike | None = None,
    prefix: str = "altair-data",
    extension: str = "csv",
    filename: str = "{prefix}-{hash}.{extension}",
    urlpath: str = "",
) -> partial | _ToFormatReturnUrlDict:
    """Write the data model to a .csv file and return a url based data model."""
    kwds = _to_text_kwds(prefix, extension, filename, urlpath)
    if data is None:
        return partial(to_csv, **kwds)
    else:
        data_str = _data_to_csv_string(data)
        return _to_text(data_str, **kwds, format=_FormatDict(type="csv"))


def _to_text(
    data: str,
    prefix: str,
    extension: str,
    filename: str,
    urlpath: str,
    format: _FormatDict,
) -> _ToFormatReturnUrlDict:
    data_hash = _compute_data_hash(data)
    filename = filename.format(prefix=prefix, hash=data_hash, extension=extension)
    Path(filename).write_text(data, encoding="utf-8")
    url = str(Path(urlpath, filename))
    return _ToFormatReturnUrlDict({"url": url, "format": format})


def _to_text_kwds(prefix: str, extension: str, filename: str, urlpath: str, /) -> dict[str, str]:  # fmt: skip
    return {"prefix": prefix, "extension": extension, "filename": filename, "urlpath": urlpath}  # fmt: skip


def to_values(data: DataType) -> ToValuesReturnType:
    """Replace a DataFrame by a data model with values."""
    check_data_type(data)
    # `pass_through=True` passes `data` through as-is if it is not a Narwhals object.
    data_native = nw.to_native(data, pass_through=True)
    if isinstance(data_native, SupportsGeoInterface):
        return {"values": _from_geo_interface(data_native)}
    elif is_pandas_dataframe(data_native):
        data_native = sanitize_pandas_dataframe(data_native)
        return {"values": data_native.to_dict(orient="records")}
    elif isinstance(data_native, dict):
        if "values" not in data_native:
            msg = "values expected in data dict, but not present."
            raise KeyError(msg)
        return data_native
    elif isinstance(data, nw.DataFrame):
        data = sanitize_narwhals_dataframe(data)
        return {"values": data.rows(named=True)}
    else:
        # Should never reach this state as tested by check_data_type
        msg = f"Unrecognized data type: {type(data)}"
        raise ValueError(msg)


def check_data_type(data: DataType) -> None:
    if not is_data_type(data):
        msg = f"Expected dict, DataFrame or a __geo_interface__ attribute, got: {type(data)}"
        raise TypeError(msg)


# ==============================================================================
# Private utilities
# ==============================================================================
def _compute_data_hash(data_str: str) -> str:
    return hashlib.sha256(data_str.encode()).hexdigest()[:32]


def _from_geo_interface(data: SupportsGeoInterface | Any) -> dict[str, Any]:
    """
    Santize a ``__geo_interface__`` w/ pre-santize step for ``pandas`` if needed.

    Notes
    -----
    Split out to resolve typing issues related to:
    - Intersection types
    - ``typing.TypeGuard``
    - ``pd.DataFrame.__getattr__``
    """
    if is_pandas_dataframe(data):
        data = sanitize_pandas_dataframe(data)
    return sanitize_geo_interface(data.__geo_interface__)


def _data_to_json_string(data: DataType) -> str:
    """Return a JSON string representation of the input data."""
    check_data_type(data)
    if isinstance(data, SupportsGeoInterface):
        return json.dumps(_from_geo_interface(data))
    elif is_pandas_dataframe(data):
        data = sanitize_pandas_dataframe(data)
        return data.to_json(orient="records", double_precision=15)
    elif isinstance(data, dict):
        if "values" not in data:
            msg = "values expected in data dict, but not present."
            raise KeyError(msg)
        return json.dumps(data["values"], sort_keys=True)
    try:
        data_nw = nw.from_native(data, eager_only=True)
    except TypeError as exc:
        msg = "to_json only works with data expressed as a DataFrame or as a dict"
        raise NotImplementedError(msg) from exc
    data_nw = sanitize_narwhals_dataframe(data_nw)
    return json.dumps(data_nw.rows(named=True))


def _data_to_csv_string(data: DataType) -> str:
    """Return a CSV string representation of the input data."""
    check_data_type(data)
    if isinstance(data, SupportsGeoInterface):
        msg = (
            f"to_csv does not yet work with data that "
            f"is of type {type(SupportsGeoInterface).__name__!r}.\n"
            f"See https://github.com/vega/altair/issues/3441"
        )
        raise NotImplementedError(msg)
    elif is_pandas_dataframe(data):
        data = sanitize_pandas_dataframe(data)
        return data.to_csv(index=False)
    elif isinstance(data, dict):
        if "values" not in data:
            msg = "values expected in data dict, but not present"
            raise KeyError(msg)
        try:
            import pandas as pd
        except ImportError as exc:
            msg = "pandas is required to convert a dict to a CSV string"
            raise ImportError(msg) from exc
        return pd.DataFrame.from_dict(data["values"]).to_csv(index=False)
    try:
        data_nw = nw.from_native(data, eager_only=True)
    except TypeError as exc:
        msg = "to_csv only works with data expressed as a DataFrame or as a dict"
        raise NotImplementedError(msg) from exc
    return data_nw.write_csv()


def arrow_table_from_dfi_dataframe(dfi_df: DataFrameLike) -> pa.Table:
    """Convert a DataFrame Interchange Protocol compatible object to an Arrow Table."""
    import pyarrow as pa

    # First check if the dataframe object has a method to convert to arrow.
    # Give this preference over the pyarrow from_dataframe function since the object
    # has more control over the conversion, and may have broader compatibility.
    # This is the case for Polars, which supports Date32 columns in direct conversion
    # while pyarrow does not yet support this type in from_dataframe
    for convert_method_name in ("arrow", "to_arrow", "to_arrow_table", "to_pyarrow"):
        convert_method = getattr(dfi_df, convert_method_name, None)
        if callable(convert_method):
            result = convert_method()
            if isinstance(result, pa.Table):
                return result

    pi = import_pyarrow_interchange()
    return pi.from_dataframe(dfi_df)