Spaces:
Runtime error
Runtime error
File size: 9,653 Bytes
8a6cf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
from __future__ import annotations
import uuid
from importlib.metadata import version as importlib_version
from typing import TYPE_CHECKING, Any, Callable, Final, TypedDict, Union, overload
from weakref import WeakValueDictionary
from narwhals.stable.v1.dependencies import is_into_dataframe
from packaging.version import Version
from altair.utils._importers import import_vegafusion
from altair.utils.core import DataFrameLike
from altair.utils.data import (
DataType,
MaxRowsError,
SupportsGeoInterface,
ToValuesReturnType,
)
from altair.vegalite.data import default_data_transformer
if TYPE_CHECKING:
import sys
from collections.abc import MutableMapping
from narwhals.stable.v1.typing import IntoDataFrame
from vegafusion.runtime import ChartState
if sys.version_info >= (3, 13):
from typing import TypeIs
else:
from typing_extensions import TypeIs
# Temporary storage for dataframes that have been extracted
# from charts by the vegafusion data transformer. Use a WeakValueDictionary
# rather than a dict so that the Python interpreter is free to garbage
# collect the stored DataFrames.
extracted_inline_tables: MutableMapping[str, DataFrameLike] = WeakValueDictionary()
# Special URL prefix that VegaFusion uses to denote that a
# dataset in a Vega spec corresponds to an entry in the `inline_datasets`
# kwarg of vf.runtime.pre_transform_spec().
VEGAFUSION_PREFIX: Final = "vegafusion+dataset://"
try:
VEGAFUSION_VERSION: Version | None = Version(importlib_version("vegafusion"))
except ImportError:
VEGAFUSION_VERSION = None
if VEGAFUSION_VERSION and Version("2.0.0a0") <= VEGAFUSION_VERSION:
def is_supported_by_vf(data: Any) -> TypeIs[DataFrameLike]:
# Test whether VegaFusion supports the data type
# VegaFusion v2 support narwhals-compatible DataFrames
return isinstance(data, DataFrameLike) or is_into_dataframe(data)
else:
def is_supported_by_vf(data: Any) -> TypeIs[DataFrameLike]:
return isinstance(data, DataFrameLike)
class _ToVegaFusionReturnUrlDict(TypedDict):
url: str
_VegaFusionReturnType = Union[_ToVegaFusionReturnUrlDict, ToValuesReturnType]
@overload
def vegafusion_data_transformer(
data: None = ..., max_rows: int = ...
) -> Callable[..., Any]: ...
@overload
def vegafusion_data_transformer(
data: DataFrameLike, max_rows: int = ...
) -> ToValuesReturnType: ...
@overload
def vegafusion_data_transformer(
data: dict | IntoDataFrame | SupportsGeoInterface, max_rows: int = ...
) -> _VegaFusionReturnType: ...
def vegafusion_data_transformer(
data: DataType | None = None, max_rows: int = 100000
) -> Callable[..., Any] | _VegaFusionReturnType:
"""VegaFusion Data Transformer."""
if data is None:
return vegafusion_data_transformer
if is_supported_by_vf(data) and not isinstance(data, SupportsGeoInterface):
table_name = f"table_{uuid.uuid4()}".replace("-", "_")
extracted_inline_tables[table_name] = data
return {"url": VEGAFUSION_PREFIX + table_name}
else:
# Use default transformer for geo interface objects
# # (e.g. a geopandas GeoDataFrame)
# Or if we don't recognize data type
return default_data_transformer(data)
def get_inline_table_names(vega_spec: dict[str, Any]) -> set[str]:
"""
Get a set of the inline datasets names in the provided Vega spec.
Inline datasets are encoded as URLs that start with the table://
prefix.
Parameters
----------
vega_spec: dict
A Vega specification dict
Returns
-------
set of str
Set of the names of the inline datasets that are referenced
in the specification.
Examples
--------
>>> spec = {
... "data": [
... {"name": "foo", "url": "https://path/to/file.csv"},
... {"name": "bar", "url": "vegafusion+dataset://inline_dataset_123"},
... ]
... }
>>> get_inline_table_names(spec)
{'inline_dataset_123'}
"""
table_names = set()
# Process datasets
for data in vega_spec.get("data", []):
url = data.get("url", "")
if url.startswith(VEGAFUSION_PREFIX):
name = url[len(VEGAFUSION_PREFIX) :]
table_names.add(name)
# Recursively process child marks, which may have their own datasets
for mark in vega_spec.get("marks", []):
table_names.update(get_inline_table_names(mark))
return table_names
def get_inline_tables(vega_spec: dict[str, Any]) -> dict[str, DataFrameLike]:
"""
Get the inline tables referenced by a Vega specification.
Note: This function should only be called on a Vega spec that corresponds
to a chart that was processed by the vegafusion_data_transformer.
Furthermore, this function may only be called once per spec because
the returned dataframes are deleted from internal storage.
Parameters
----------
vega_spec: dict
A Vega specification dict
Returns
-------
dict from str to dataframe
dict from inline dataset name to dataframe object
"""
inline_names = get_inline_table_names(vega_spec)
# exclude named dataset that was provided by the user,
# or dataframes that have been deleted.
table_names = inline_names.intersection(extracted_inline_tables)
return {k: extracted_inline_tables.pop(k) for k in table_names}
def compile_to_vegafusion_chart_state(
vegalite_spec: dict[str, Any], local_tz: str
) -> ChartState:
"""
Compile a Vega-Lite spec to a VegaFusion ChartState.
Note: This function should only be called on a Vega-Lite spec
that was generated with the "vegafusion" data transformer enabled.
In particular, this spec may contain references to extract datasets
using table:// prefixed URLs.
Parameters
----------
vegalite_spec: dict
A Vega-Lite spec that was generated from an Altair chart with
the "vegafusion" data transformer enabled
local_tz: str
Local timezone name (e.g. 'America/New_York')
Returns
-------
ChartState
A VegaFusion ChartState object
"""
# Local import to avoid circular ImportError
from altair import data_transformers, vegalite_compilers
vf = import_vegafusion()
# Compile Vega-Lite spec to Vega
compiler = vegalite_compilers.get()
if compiler is None:
msg = "No active vega-lite compiler plugin found"
raise ValueError(msg)
vega_spec = compiler(vegalite_spec)
# Retrieve dict of inline tables referenced by the spec
inline_tables = get_inline_tables(vega_spec)
# Pre-evaluate transforms in vega spec with vegafusion
row_limit = data_transformers.options.get("max_rows", None)
chart_state = vf.runtime.new_chart_state(
vega_spec,
local_tz=local_tz,
inline_datasets=inline_tables,
row_limit=row_limit,
)
# Check from row limit warning and convert to MaxRowsError
handle_row_limit_exceeded(row_limit, chart_state.get_warnings())
return chart_state
def compile_with_vegafusion(vegalite_spec: dict[str, Any]) -> dict[str, Any]:
"""
Compile a Vega-Lite spec to Vega and pre-transform with VegaFusion.
Note: This function should only be called on a Vega-Lite spec
that was generated with the "vegafusion" data transformer enabled.
In particular, this spec may contain references to extract datasets
using table:// prefixed URLs.
Parameters
----------
vegalite_spec: dict
A Vega-Lite spec that was generated from an Altair chart with
the "vegafusion" data transformer enabled
Returns
-------
dict
A Vega spec that has been pre-transformed by VegaFusion
"""
# Local import to avoid circular ImportError
from altair import data_transformers, vegalite_compilers
vf = import_vegafusion()
# Compile Vega-Lite spec to Vega
compiler = vegalite_compilers.get()
if compiler is None:
msg = "No active vega-lite compiler plugin found"
raise ValueError(msg)
vega_spec = compiler(vegalite_spec)
# Retrieve dict of inline tables referenced by the spec
inline_tables = get_inline_tables(vega_spec)
# Pre-evaluate transforms in vega spec with vegafusion
row_limit = data_transformers.options.get("max_rows", None)
transformed_vega_spec, warnings = vf.runtime.pre_transform_spec(
vega_spec,
vf.get_local_tz(),
inline_datasets=inline_tables,
row_limit=row_limit,
)
# Check from row limit warning and convert to MaxRowsError
handle_row_limit_exceeded(row_limit, warnings)
return transformed_vega_spec
def handle_row_limit_exceeded(row_limit: int, warnings: list):
for warning in warnings:
if warning.get("type") == "RowLimitExceeded":
msg = (
"The number of dataset rows after filtering and aggregation exceeds\n"
f"the current limit of {row_limit}. Try adding an aggregation to reduce\n"
"the size of the dataset that must be loaded into the browser. Or, disable\n"
"the limit by calling alt.data_transformers.disable_max_rows(). Note that\n"
"disabling this limit may cause the browser to freeze or crash."
)
raise MaxRowsError(msg)
def using_vegafusion() -> bool:
"""Check whether the vegafusion data transformer is enabled."""
# Local import to avoid circular ImportError
from altair import data_transformers
return data_transformers.active == "vegafusion"
|