File size: 9,653 Bytes
8a6cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from __future__ import annotations

import uuid
from importlib.metadata import version as importlib_version
from typing import TYPE_CHECKING, Any, Callable, Final, TypedDict, Union, overload
from weakref import WeakValueDictionary

from narwhals.stable.v1.dependencies import is_into_dataframe
from packaging.version import Version

from altair.utils._importers import import_vegafusion
from altair.utils.core import DataFrameLike
from altair.utils.data import (
    DataType,
    MaxRowsError,
    SupportsGeoInterface,
    ToValuesReturnType,
)
from altair.vegalite.data import default_data_transformer

if TYPE_CHECKING:
    import sys
    from collections.abc import MutableMapping

    from narwhals.stable.v1.typing import IntoDataFrame

    from vegafusion.runtime import ChartState

    if sys.version_info >= (3, 13):
        from typing import TypeIs
    else:
        from typing_extensions import TypeIs

# Temporary storage for dataframes that have been extracted
# from charts by the vegafusion data transformer. Use a WeakValueDictionary
# rather than a dict so that the Python interpreter is free to garbage
# collect the stored DataFrames.
extracted_inline_tables: MutableMapping[str, DataFrameLike] = WeakValueDictionary()

# Special URL prefix that VegaFusion uses to denote that a
# dataset in a Vega spec corresponds to an entry in the `inline_datasets`
# kwarg of vf.runtime.pre_transform_spec().
VEGAFUSION_PREFIX: Final = "vegafusion+dataset://"


try:
    VEGAFUSION_VERSION: Version | None = Version(importlib_version("vegafusion"))
except ImportError:
    VEGAFUSION_VERSION = None


if VEGAFUSION_VERSION and Version("2.0.0a0") <= VEGAFUSION_VERSION:

    def is_supported_by_vf(data: Any) -> TypeIs[DataFrameLike]:
        # Test whether VegaFusion supports the data type
        # VegaFusion v2 support narwhals-compatible DataFrames
        return isinstance(data, DataFrameLike) or is_into_dataframe(data)

else:

    def is_supported_by_vf(data: Any) -> TypeIs[DataFrameLike]:
        return isinstance(data, DataFrameLike)


class _ToVegaFusionReturnUrlDict(TypedDict):
    url: str


_VegaFusionReturnType = Union[_ToVegaFusionReturnUrlDict, ToValuesReturnType]


@overload
def vegafusion_data_transformer(
    data: None = ..., max_rows: int = ...
) -> Callable[..., Any]: ...


@overload
def vegafusion_data_transformer(
    data: DataFrameLike, max_rows: int = ...
) -> ToValuesReturnType: ...


@overload
def vegafusion_data_transformer(
    data: dict | IntoDataFrame | SupportsGeoInterface, max_rows: int = ...
) -> _VegaFusionReturnType: ...


def vegafusion_data_transformer(
    data: DataType | None = None, max_rows: int = 100000
) -> Callable[..., Any] | _VegaFusionReturnType:
    """VegaFusion Data Transformer."""
    if data is None:
        return vegafusion_data_transformer

    if is_supported_by_vf(data) and not isinstance(data, SupportsGeoInterface):
        table_name = f"table_{uuid.uuid4()}".replace("-", "_")
        extracted_inline_tables[table_name] = data
        return {"url": VEGAFUSION_PREFIX + table_name}
    else:
        # Use default transformer for geo interface objects
        # # (e.g. a geopandas GeoDataFrame)
        # Or if we don't recognize data type
        return default_data_transformer(data)


def get_inline_table_names(vega_spec: dict[str, Any]) -> set[str]:
    """
    Get a set of the inline datasets names in the provided Vega spec.

    Inline datasets are encoded as URLs that start with the table://
    prefix.

    Parameters
    ----------
    vega_spec: dict
        A Vega specification dict

    Returns
    -------
    set of str
        Set of the names of the inline datasets that are referenced
        in the specification.

    Examples
    --------
    >>> spec = {
    ...     "data": [
    ...         {"name": "foo", "url": "https://path/to/file.csv"},
    ...         {"name": "bar", "url": "vegafusion+dataset://inline_dataset_123"},
    ...     ]
    ... }
    >>> get_inline_table_names(spec)
    {'inline_dataset_123'}
    """
    table_names = set()

    # Process datasets
    for data in vega_spec.get("data", []):
        url = data.get("url", "")
        if url.startswith(VEGAFUSION_PREFIX):
            name = url[len(VEGAFUSION_PREFIX) :]
            table_names.add(name)

    # Recursively process child marks, which may have their own datasets
    for mark in vega_spec.get("marks", []):
        table_names.update(get_inline_table_names(mark))

    return table_names


def get_inline_tables(vega_spec: dict[str, Any]) -> dict[str, DataFrameLike]:
    """
    Get the inline tables referenced by a Vega specification.

    Note: This function should only be called on a Vega spec that corresponds
    to a chart that was processed by the vegafusion_data_transformer.
    Furthermore, this function may only be called once per spec because
    the returned dataframes are deleted from internal storage.

    Parameters
    ----------
    vega_spec: dict
        A Vega specification dict

    Returns
    -------
    dict from str to dataframe
        dict from inline dataset name to dataframe object
    """
    inline_names = get_inline_table_names(vega_spec)
    # exclude named dataset that was provided by the user,
    # or dataframes that have been deleted.
    table_names = inline_names.intersection(extracted_inline_tables)
    return {k: extracted_inline_tables.pop(k) for k in table_names}


def compile_to_vegafusion_chart_state(
    vegalite_spec: dict[str, Any], local_tz: str
) -> ChartState:
    """
    Compile a Vega-Lite spec to a VegaFusion ChartState.

    Note: This function should only be called on a Vega-Lite spec
    that was generated with the "vegafusion" data transformer enabled.
    In particular, this spec may contain references to extract datasets
    using table:// prefixed URLs.

    Parameters
    ----------
    vegalite_spec: dict
        A Vega-Lite spec that was generated from an Altair chart with
        the "vegafusion" data transformer enabled
    local_tz: str
        Local timezone name (e.g. 'America/New_York')

    Returns
    -------
    ChartState
        A VegaFusion ChartState object
    """
    # Local import to avoid circular ImportError
    from altair import data_transformers, vegalite_compilers

    vf = import_vegafusion()

    # Compile Vega-Lite spec to Vega
    compiler = vegalite_compilers.get()
    if compiler is None:
        msg = "No active vega-lite compiler plugin found"
        raise ValueError(msg)

    vega_spec = compiler(vegalite_spec)

    # Retrieve dict of inline tables referenced by the spec
    inline_tables = get_inline_tables(vega_spec)

    # Pre-evaluate transforms in vega spec with vegafusion
    row_limit = data_transformers.options.get("max_rows", None)

    chart_state = vf.runtime.new_chart_state(
        vega_spec,
        local_tz=local_tz,
        inline_datasets=inline_tables,
        row_limit=row_limit,
    )

    # Check from row limit warning and convert to MaxRowsError
    handle_row_limit_exceeded(row_limit, chart_state.get_warnings())

    return chart_state


def compile_with_vegafusion(vegalite_spec: dict[str, Any]) -> dict[str, Any]:
    """
    Compile a Vega-Lite spec to Vega and pre-transform with VegaFusion.

    Note: This function should only be called on a Vega-Lite spec
    that was generated with the "vegafusion" data transformer enabled.
    In particular, this spec may contain references to extract datasets
    using table:// prefixed URLs.

    Parameters
    ----------
    vegalite_spec: dict
        A Vega-Lite spec that was generated from an Altair chart with
        the "vegafusion" data transformer enabled

    Returns
    -------
    dict
        A Vega spec that has been pre-transformed by VegaFusion
    """
    # Local import to avoid circular ImportError
    from altair import data_transformers, vegalite_compilers

    vf = import_vegafusion()

    # Compile Vega-Lite spec to Vega
    compiler = vegalite_compilers.get()
    if compiler is None:
        msg = "No active vega-lite compiler plugin found"
        raise ValueError(msg)

    vega_spec = compiler(vegalite_spec)

    # Retrieve dict of inline tables referenced by the spec
    inline_tables = get_inline_tables(vega_spec)

    # Pre-evaluate transforms in vega spec with vegafusion
    row_limit = data_transformers.options.get("max_rows", None)
    transformed_vega_spec, warnings = vf.runtime.pre_transform_spec(
        vega_spec,
        vf.get_local_tz(),
        inline_datasets=inline_tables,
        row_limit=row_limit,
    )

    # Check from row limit warning and convert to MaxRowsError
    handle_row_limit_exceeded(row_limit, warnings)

    return transformed_vega_spec


def handle_row_limit_exceeded(row_limit: int, warnings: list):
    for warning in warnings:
        if warning.get("type") == "RowLimitExceeded":
            msg = (
                "The number of dataset rows after filtering and aggregation exceeds\n"
                f"the current limit of {row_limit}. Try adding an aggregation to reduce\n"
                "the size of the dataset that must be loaded into the browser. Or, disable\n"
                "the limit by calling alt.data_transformers.disable_max_rows(). Note that\n"
                "disabling this limit may cause the browser to freeze or crash."
            )
            raise MaxRowsError(msg)


def using_vegafusion() -> bool:
    """Check whether the vegafusion data transformer is enabled."""
    # Local import to avoid circular ImportError
    from altair import data_transformers

    return data_transformers.active == "vegafusion"