File size: 5,003 Bytes
8a6cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
A collection of utilities for ensuring that training can always occur. Heavily influenced by the
[toma](https://github.com/BlackHC/toma) library.
"""

import functools
import gc
import inspect

import torch

from .imports import is_mlu_available, is_mps_available, is_npu_available, is_xpu_available


def clear_device_cache(garbage_collection=False):
    """
    Clears the device cache by calling `torch.{backend}.empty_cache`. Can also run `gc.collect()`, but do note that
    this is a *considerable* slowdown and should be used sparingly.
    """
    if garbage_collection:
        gc.collect()

    if is_xpu_available():
        torch.xpu.empty_cache()
    elif is_mlu_available():
        torch.mlu.empty_cache()
    elif is_npu_available():
        torch.npu.empty_cache()
    elif is_mps_available(min_version="2.0"):
        torch.mps.empty_cache()
    else:
        torch.cuda.empty_cache()


def release_memory(*objects):
    """
    Releases memory from `objects` by setting them to `None` and calls `gc.collect()` and `torch.cuda.empty_cache()`.
    Returned objects should be reassigned to the same variables.

    Args:
        objects (`Iterable`):
            An iterable of objects
    Returns:
        A list of `None` objects to replace `objects`

    Example:

        ```python
        >>> import torch
        >>> from accelerate.utils import release_memory

        >>> a = torch.ones(1000, 1000).cuda()
        >>> b = torch.ones(1000, 1000).cuda()
        >>> a, b = release_memory(a, b)
        ```
    """
    if not isinstance(objects, list):
        objects = list(objects)
    for i in range(len(objects)):
        objects[i] = None
    clear_device_cache(garbage_collection=True)
    return objects


def should_reduce_batch_size(exception: Exception) -> bool:
    """
    Checks if `exception` relates to CUDA out-of-memory, CUDNN not supported, or CPU out-of-memory

    Args:
        exception (`Exception`):
            An exception
    """
    _statements = [
        "CUDA out of memory.",  # CUDA OOM
        "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.",  # CUDNN SNAFU
        "DefaultCPUAllocator: can't allocate memory",  # CPU OOM
    ]
    if isinstance(exception, RuntimeError) and len(exception.args) == 1:
        return any(err in exception.args[0] for err in _statements)
    return False


def find_executable_batch_size(function: callable = None, starting_batch_size: int = 128):
    """
    A basic decorator that will try to execute `function`. If it fails from exceptions related to out-of-memory or
    CUDNN, the batch size is cut in half and passed to `function`

    `function` must take in a `batch_size` parameter as its first argument.

    Args:
        function (`callable`, *optional*):
            A function to wrap
        starting_batch_size (`int`, *optional*):
            The batch size to try and fit into memory

    Example:

    ```python
    >>> from accelerate.utils import find_executable_batch_size


    >>> @find_executable_batch_size(starting_batch_size=128)
    ... def train(batch_size, model, optimizer):
    ...     ...


    >>> train(model, optimizer)
    ```
    """
    if function is None:
        return functools.partial(find_executable_batch_size, starting_batch_size=starting_batch_size)

    batch_size = starting_batch_size

    def decorator(*args, **kwargs):
        nonlocal batch_size
        clear_device_cache(garbage_collection=True)
        params = list(inspect.signature(function).parameters.keys())
        # Guard against user error
        if len(params) < (len(args) + 1):
            arg_str = ", ".join([f"{arg}={value}" for arg, value in zip(params[1:], args[1:])])
            raise TypeError(
                f"Batch size was passed into `{function.__name__}` as the first argument when called."
                f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`"
            )
        while True:
            if batch_size == 0:
                raise RuntimeError("No executable batch size found, reached zero.")
            try:
                return function(batch_size, *args, **kwargs)
            except Exception as e:
                if should_reduce_batch_size(e):
                    clear_device_cache(garbage_collection=True)
                    batch_size //= 2
                else:
                    raise

    return decorator