Spaces:
Runtime error
Runtime error
File size: 57,897 Bytes
8a6cf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import os
from abc import ABC
from functools import partial
import torch
import torch.nn.functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
from .imports import is_megatron_lm_available, is_transformers_available
from .operations import recursively_apply, send_to_device
if is_transformers_available():
from transformers.modeling_outputs import (
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
SequenceClassifierOutput,
)
if is_megatron_lm_available():
from megatron import (
get_args,
get_num_microbatches,
get_tensorboard_writer,
get_tokenizer,
print_rank_last,
)
from megatron.arguments import (
_add_data_args,
_add_validation_args,
core_transformer_config_from_args,
parse_args,
validate_args,
)
from megatron.checkpointing import load_args_from_checkpoint, load_checkpoint, save_checkpoint
from megatron.core import mpu, tensor_parallel
from megatron.core.distributed import DistributedDataParallel as LocalDDP
from megatron.core.distributed import finalize_model_grads
from megatron.core.enums import ModelType
from megatron.core.parallel_state import get_tensor_model_parallel_group, get_tensor_model_parallel_src_rank
from megatron.core.pipeline_parallel import get_forward_backward_func
from megatron.core.utils import get_model_config
from megatron.data.dataset_utils import build_train_valid_test_datasets
from megatron.global_vars import set_global_variables
from megatron.initialize import (
_compile_dependencies,
_init_autoresume,
_initialize_distributed,
_set_random_seed,
set_jit_fusion_options,
write_args_to_tensorboard,
)
from megatron.model import BertModel, Float16Module, GPTModel, T5Model
from megatron.model.classification import Classification
from megatron.optimizer import get_megatron_optimizer
from megatron.text_generation.communication import broadcast_int_list, broadcast_tensor
from megatron.text_generation.generation import (
beam_search_and_return_on_first_stage,
generate_tokens_probs_and_return_on_first_stage,
)
from megatron.tokenizer.tokenizer import _vocab_size_with_padding
from megatron.training import (
build_train_valid_test_data_iterators,
get_optimizer_param_scheduler,
num_floating_point_operations,
setup_model_and_optimizer,
train_step,
training_log,
)
from megatron.utils import (
average_losses_across_data_parallel_group,
calc_params_l2_norm,
get_ltor_masks_and_position_ids,
unwrap_model,
)
# model utilities
def model_provider_func(pre_process=True, post_process=True, add_encoder=True, add_decoder=True):
"""Build the model."""
args = get_args()
mode = "pre-training" if args.pretraining_flag else "fine-tuning"
if args.rank == 0:
print(f"Building {args.model_type_name} model in the {mode} mode.")
print(
"The Megatron LM model weights are initialized at random in `accelerator.prepare`. "
"Please use `accelerator.load_checkpoint` to load a pre-trained checkpoint matching the distributed setup."
)
config = core_transformer_config_from_args(args)
if args.model_type_name == "bert":
if args.pretraining_flag:
num_tokentypes = 2 if args.bert_binary_head else 0
model = BertModel(
config=config,
num_tokentypes=num_tokentypes,
add_binary_head=args.bert_binary_head,
parallel_output=True,
pre_process=pre_process,
post_process=post_process,
)
else:
model = Classification(
config=config,
num_classes=args.num_labels,
num_tokentypes=2,
pre_process=pre_process,
post_process=post_process,
)
elif args.model_type_name == "gpt":
model = GPTModel(
config=config,
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process,
)
elif args.model_type_name == "t5":
model = T5Model(
config=config,
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder,
)
else:
raise ValueError(f"Unsupported model type: {args.model_type_name}")
return model
def prepare_model_optimizer_scheduler(accelerator):
accelerator.print("Preparing model optimizer scheduler")
args = get_args()
if accelerator.state.megatron_lm_plugin.custom_prepare_model_function is not None:
if accelerator.state.megatron_lm_plugin.custom_model_provider_function is None:
raise ValueError(
"You must provide a `custom_model_provider_function` when using a `custom_prepare_model_function`."
)
custom_model_provider_func = accelerator.state.megatron_lm_plugin.custom_model_provider_function
model = accelerator.state.megatron_lm_plugin.custom_prepare_model_function(custom_model_provider_func)
optimizer = prepare_optimizer(accelerator, model)
scheduler = prepare_scheduler(accelerator, optimizer, scheduler=None)
else:
model_type = ModelType.encoder_or_decoder
if args.model_type_name == "t5":
model_type = ModelType.encoder_and_decoder
model_provider_func_ = model_provider_func
if accelerator.state.megatron_lm_plugin.custom_model_provider_function is not None:
model_provider_func_ = accelerator.state.megatron_lm_plugin.custom_model_provider_function
(model, optimizer, scheduler) = setup_model_and_optimizer(
model_provider_func_,
model_type,
no_wd_decay_cond=args.no_wd_decay_cond,
scale_lr_cond=args.scale_lr_cond,
lr_mult=args.lr_mult,
)
args.model_len = len(model)
return model, optimizer, scheduler
# dataloader utilities
class MegatronLMDummyDataLoader:
"""
Dummy dataloader presents model parameters or param groups, this is primarily used to follow conventional training
Args:
**dataset_kwargs: Megatron data arguments.
"""
def __init__(self, **dataset_kwargs):
parser = argparse.ArgumentParser()
parser = _add_data_args(parser)
parser = _add_validation_args(parser)
data_args = parser.parse_known_args()
self.dataset_args = vars(data_args[0])
self.dataset_args.update(dataset_kwargs)
self.dataset_args["megatron_dataset_flag"] = True
def set_megatron_data_args(self):
args = get_args()
for key, value in self.dataset_args.items():
old_value = getattr(args, key, "")
if old_value != value:
print(
f"WARNING: MegatronLMDummyDataLoader overriding arguments for "
f"{key}:{old_value} with {key}:{value}"
)
setattr(args, key, value)
def get_train_valid_test_datasets_provider(self, accelerator):
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
dataset_args = {
"data_prefix": args.data_path if isinstance(args.data_path, (list, tuple)) else [args.data_path],
"splits_string": args.split,
"train_valid_test_num_samples": train_val_test_num_samples,
"seed": args.seed,
}
if args.model_type_name == "bert":
dataset_args.update(
{
"max_seq_length": args.seq_length,
"binary_head": args.bert_binary_head,
}
)
elif args.model_type_name == "gpt":
dataset_args.update(
{
"max_seq_length": args.seq_length,
}
)
elif args.model_type_name == "t5":
dataset_args.update(
{
"max_seq_length": args.encoder_seq_length,
"max_seq_length_dec": args.decoder_seq_length,
"dataset_type": "t5",
}
)
else:
raise ValueError(f"Unsupported model type: {args.model_type_name}")
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(**dataset_args)
return train_ds, valid_ds, test_ds
if accelerator.state.megatron_lm_plugin.custom_megatron_datasets_provider_function is not None:
return accelerator.state.megatron_lm_plugin.custom_megatron_datasets_provider_function
try:
args = get_args()
# Use '--no-use-pep517 -e' to pip install nvidia's megatron from source
if args.model_type_name == "bert":
from pretrain_bert import train_valid_test_datasets_provider
train_valid_test_datasets_provider.is_distributed = True
return train_valid_test_datasets_provider
elif args.model_type_name == "gpt":
from pretrain_gpt import train_valid_test_datasets_provider
train_valid_test_datasets_provider.is_distributed = True
return train_valid_test_datasets_provider
elif args.model_type_name == "t5":
from pretrain_t5 import train_valid_test_datasets_provider
train_valid_test_datasets_provider.is_distributed = True
return train_valid_test_datasets_provider
except ImportError:
pass
return train_valid_test_datasets_provider
def build_train_valid_test_data_iterators(self, accelerator):
args = get_args()
train_valid_test_dataset_provider = self.get_train_valid_test_datasets_provider(accelerator)
if args.virtual_pipeline_model_parallel_size is not None:
train_data_iterator = []
valid_data_iterator = []
test_data_iterator = []
for i in range(getattr(args, "model_len", 0)):
mpu.set_virtual_pipeline_model_parallel_rank(i)
iterators = build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
train_data_iterator.append(iterators[0])
valid_data_iterator.append(iterators[1])
test_data_iterator.append(iterators[2])
else:
train_data_iterator, valid_data_iterator, test_data_iterator = build_train_valid_test_data_iterators(
train_valid_test_dataset_provider
)
return train_data_iterator, valid_data_iterator, test_data_iterator
def _handle_megatron_data_iterator(accelerator, data_iterator):
class DummyMegatronDataloader:
def __iter__(self):
return self
def __next__(self):
return {}
is_data_iterator_empty = data_iterator is None
is_src_data_iterator_empty = torch.tensor(is_data_iterator_empty, dtype=torch.bool, device=accelerator.device)
torch.distributed.broadcast(
is_src_data_iterator_empty, get_tensor_model_parallel_src_rank(), group=get_tensor_model_parallel_group()
)
if not is_src_data_iterator_empty and is_data_iterator_empty:
return DummyMegatronDataloader()
return data_iterator
def prepare_data_loader(accelerator, dataloader):
accelerator.print("Preparing dataloader")
args = get_args()
if not args.megatron_dataset_flag:
from ..data_loader import _PYTORCH_DATALOADER_KWARGS, prepare_data_loader
micro_batch_size = args.micro_batch_size * args.num_micro_batches
kwargs = {k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) for k in _PYTORCH_DATALOADER_KWARGS}
if kwargs["batch_size"] is None:
if isinstance(kwargs["sampler"], torch.utils.data.BatchSampler):
kwargs["sampler"].batch_size = micro_batch_size
else:
del kwargs["sampler"]
del kwargs["shuffle"]
del kwargs["batch_size"]
kwargs["batch_sampler"].batch_size = micro_batch_size
else:
del kwargs["batch_sampler"]
kwargs["batch_size"] = micro_batch_size
dataloader = torch.utils.data.DataLoader(dataloader.dataset, **kwargs)
# split_batches:
# Megatron only needs to fetch different data between different dp groups,
# and does not need to split the data within the dp group.
return prepare_data_loader(
dataloader,
accelerator.device,
num_processes=mpu.get_data_parallel_world_size(),
process_index=mpu.get_data_parallel_rank(),
split_batches=False,
put_on_device=True,
rng_types=accelerator.rng_types.copy(),
dispatch_batches=accelerator.dispatch_batches,
)
else:
if args.consumed_samples is not None:
(
args.consumed_train_samples,
args.consumed_valid_samples,
args.consumed_test_samples,
) = args.consumed_samples
else:
args.consumed_train_samples, args.consumed_valid_samples, args.consumed_test_samples = 0, 0, 0
args.micro_batch_size = args.micro_batch_size * args.num_micro_batches
# In order to be compatible with data in transform format,
# it needs to increase the size of mbs first,
# and then split the large batch data into some mbs.
(
train_data_iterator,
valid_data_iterator,
test_data_iterator,
) = dataloader.build_train_valid_test_data_iterators(accelerator)
args.micro_batch_size = args.micro_batch_size // args.num_micro_batches
train_data_iterator = _handle_megatron_data_iterator(
accelerator=accelerator, data_iterator=train_data_iterator
)
valid_data_iterator = _handle_megatron_data_iterator(
accelerator=accelerator, data_iterator=valid_data_iterator
)
test_data_iterator = _handle_megatron_data_iterator(accelerator=accelerator, data_iterator=test_data_iterator)
return train_data_iterator, valid_data_iterator, test_data_iterator
# optimizer utilities
class MegatronLMOptimizerWrapper(AcceleratedOptimizer):
def __init__(self, optimizer):
super().__init__(optimizer, device_placement=False, scaler=None)
def zero_grad(self, set_to_none=None):
pass # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed
def step(self):
pass # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed
@property
def step_was_skipped(self):
"""Whether or not the optimizer step was done, or skipped because of gradient overflow."""
return self.optimizer.skipped_iter
def prepare_optimizer(accelerator, model):
accelerator.print("Preparing optimizer")
args = get_args()
return get_megatron_optimizer(model, args.no_wd_decay_cond, args.scale_lr_cond, args.lr_mult)
# scheduler utilities
class MegatronLMDummyScheduler:
"""
Dummy scheduler presents model parameters or param groups, this is primarily used to follow conventional training
loop when scheduler config is specified in the deepspeed config file.
Args:
optimizer (`torch.optim.optimizer.Optimizer`):
The optimizer to wrap.
total_num_steps (int):
Total number of steps.
warmup_num_steps (int):
Number of steps for warmup.
**kwargs (additional keyword arguments, *optional*):
Other arguments.
"""
def __init__(self, optimizer, total_num_steps=None, warmup_num_steps=0, **kwargs):
self.optimizer = optimizer
self.total_num_steps = total_num_steps
self.warmup_num_steps = warmup_num_steps
self.kwargs = kwargs
class MegatronLMSchedulerWrapper(AcceleratedScheduler):
def __init__(self, scheduler, optimizers):
super().__init__(scheduler, optimizers)
def step(self, *args, **kwargs):
return # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed
def prepare_scheduler(accelerator, optimizer, scheduler):
accelerator.print("Preparing scheduler")
scheduler = get_optimizer_param_scheduler(optimizer)
return scheduler
class AbstractTrainStep(ABC):
"""Abstract class for batching, forward pass and loss handler."""
def __init__(self, name):
super().__init__()
self.name = name
def get_batch_func(self, accelerator, megatron_dataset_flag):
pass
def get_forward_step_func(self):
pass
def get_loss_func(self, accelerator):
pass
class BertTrainStep(AbstractTrainStep):
"""
Bert train step class.
Args:
args (`argparse.Namespace`): Megatron-LM arguments.
"""
def __init__(self, accelerator, args):
super().__init__("BertTrainStep")
self.get_batch = self.get_batch_func(accelerator, args.megatron_dataset_flag)
self.loss_func = self.get_loss_func(accelerator, args.pretraining_flag, args.num_labels)
self.forward_step = self.get_forward_step_func(args.pretraining_flag, args.bert_binary_head)
if not args.model_return_dict:
self.model_output_class = None
else:
self.model_output_class = SequenceClassifierOutput
def get_batch_func(self, accelerator, megatron_dataset_flag):
def get_batch_megatron(data_iterator):
"""Build the batch."""
# Items and their type.
keys = ["text", "types", "labels", "is_random", "loss_mask", "padding_mask"]
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens = data_b["text"].long()
types = data_b["types"].long()
sentence_order = data_b["is_random"].long()
loss_mask = data_b["loss_mask"].float()
lm_labels = data_b["labels"].long()
padding_mask = data_b["padding_mask"].long()
return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask
def get_batch_transformer(data_iterator):
"""Build the batch."""
data = next(data_iterator)
data = send_to_device(data, torch.cuda.current_device())
# Unpack.
tokens = data["input_ids"].long()
padding_mask = data["attention_mask"].long()
if "token_type_ids" in data:
types = data["token_type_ids"].long()
else:
types = None
if "labels" in data:
lm_labels = data["labels"].long()
loss_mask = (data["labels"] != -100).to(torch.float)
else:
lm_labels = None
loss_mask = None
if "next_sentence_label" in data:
sentence_order = data["next_sentence_label"].long()
else:
sentence_order = None
return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask
if accelerator.state.megatron_lm_plugin.custom_get_batch_function is not None:
return accelerator.state.megatron_lm_plugin.custom_get_batch_function
if megatron_dataset_flag:
try:
# Use '--no-use-pep517 -e' to pip install nvidia's megatron from source
from pretrain_bert import get_batch
return get_batch
except ImportError:
pass
return get_batch_megatron
else:
return get_batch_transformer
def get_loss_func(self, accelerator, pretraining_flag, num_labels):
def loss_func_pretrain(loss_mask, sentence_order, output_tensor):
lm_loss_, sop_logits = output_tensor
lm_loss_ = lm_loss_.float()
loss_mask = loss_mask.float()
lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
if sop_logits is not None:
sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(), sentence_order.view(-1), ignore_index=-1)
sop_loss = sop_loss.float()
loss = lm_loss + sop_loss
averaged_losses = average_losses_across_data_parallel_group([lm_loss, sop_loss])
return loss, {"lm loss": averaged_losses[0], "sop loss": averaged_losses[1]}
else:
loss = lm_loss
averaged_losses = average_losses_across_data_parallel_group([lm_loss])
return loss, {"lm loss": averaged_losses[0]}
def loss_func_finetune(labels, logits):
if num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, num_labels), labels.view(-1))
else:
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
averaged_losses = average_losses_across_data_parallel_group([loss])
return loss, {"loss": averaged_losses[0]}
if accelerator.state.megatron_lm_plugin.custom_loss_function is not None:
return accelerator.state.megatron_lm_plugin.custom_loss_function
if pretraining_flag:
return loss_func_pretrain
else:
return loss_func_finetune
def get_forward_step_func(self, pretraining_flag, bert_binary_head):
def forward_step(data_iterator, model):
"""Forward step."""
tokens, types, sentence_order, loss_mask, labels, padding_mask = self.get_batch(data_iterator)
if not bert_binary_head:
types = None
# Forward pass through the model.
if pretraining_flag:
output_tensor = model(tokens, padding_mask, tokentype_ids=types, lm_labels=labels)
return output_tensor, partial(self.loss_func, loss_mask, sentence_order)
else:
logits = model(tokens, padding_mask, tokentype_ids=types)
return logits, partial(self.loss_func, labels)
return forward_step
class GPTTrainStep(AbstractTrainStep):
"""
GPT train step class.
Args:
args (`argparse.Namespace`): Megatron-LM arguments.
"""
def __init__(self, accelerator, args):
super().__init__("GPTTrainStep")
self.get_batch = self.get_batch_func(accelerator, args.megatron_dataset_flag)
self.loss_func = self.get_loss_func(accelerator)
self.forward_step = self.get_forward_step_func()
self.eod_token = args.padded_vocab_size - 1
if args.vocab_file is not None:
tokenizer = get_tokenizer()
self.eod_token = tokenizer.eod
self.reset_position_ids = args.reset_position_ids
self.reset_attention_mask = args.reset_attention_mask
self.eod_mask_loss = args.eod_mask_loss
if not args.model_return_dict:
self.model_output_class = None
else:
self.model_output_class = CausalLMOutputWithCrossAttentions
def get_batch_func(self, accelerator, megatron_dataset_flag):
def get_batch_megatron(data_iterator):
"""Generate a batch"""
# Items and their type.
keys = ["text"]
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b["text"].long()
labels = tokens_[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens, self.eod_token, self.reset_position_ids, self.reset_attention_mask, self.eod_mask_loss
)
return tokens, labels, loss_mask, attention_mask, position_ids
def get_batch_transformer(data_iterator):
data = next(data_iterator)
data = {"input_ids": data["input_ids"]}
data = send_to_device(data, torch.cuda.current_device())
tokens_ = data["input_ids"].long()
padding = torch.zeros((tokens_.shape[0], 1), dtype=tokens_.dtype, device=tokens_.device) + self.eod_token
tokens_ = torch.concat([tokens_, padding], dim=1)
labels = tokens_[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens, self.eod_token, self.reset_position_ids, self.reset_attention_mask, True
)
return tokens, labels, loss_mask, attention_mask, position_ids
if accelerator.state.megatron_lm_plugin.custom_get_batch_function is not None:
return accelerator.state.megatron_lm_plugin.custom_get_batch_function
if megatron_dataset_flag:
try:
# Use '--no-use-pep517 -e' to pip install nvidia's megatron from source
from pretrain_gpt import get_batch
return get_batch
except ImportError:
pass
return get_batch_megatron
else:
return get_batch_transformer
def get_loss_func(self, accelerator):
args = get_args()
def loss_func(loss_mask, output_tensor):
if args.return_logits:
losses, logits = output_tensor
else:
losses = output_tensor
losses = losses.float()
loss_mask = loss_mask.view(-1).float()
if args.context_parallel_size > 1:
loss = torch.cat([torch.sum(losses.view(-1) * loss_mask).view(1), loss_mask.sum().view(1)])
torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
loss = loss[0] / loss[1]
else:
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Check individual rank losses are not NaN prior to DP all-reduce.
if args.check_for_nan_in_loss_and_grad:
global_rank = torch.distributed.get_rank()
assert not loss.isnan(), (
f"Rank {global_rank}: found NaN in local forward loss calculation. "
f"Device: {torch.cuda.current_device()}, node: {os.uname()[1]}"
)
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
output_dict = {"lm loss": averaged_loss[0]}
if args.return_logits:
output_dict.update({"logits": logits})
return loss, output_dict
if accelerator.state.megatron_lm_plugin.custom_loss_function is not None:
return accelerator.state.megatron_lm_plugin.custom_loss_function
return loss_func
def get_forward_step_func(self):
def forward_step(data_iterator, model):
"""Forward step."""
# Get the batch.
tokens, labels, loss_mask, attention_mask, position_ids = self.get_batch(data_iterator)
output_tensor = model(tokens, position_ids, attention_mask, labels=labels)
return output_tensor, partial(self.loss_func, loss_mask)
return forward_step
class T5TrainStep(AbstractTrainStep):
"""
T5 train step class.
Args:
args (`argparse.Namespace`): Megatron-LM arguments.
"""
def __init__(self, accelerator, args):
super().__init__("T5TrainStep")
self.get_batch = self.get_batch_func(accelerator, args.megatron_dataset_flag)
self.loss_func = self.get_loss_func(accelerator)
self.forward_step = self.get_forward_step_func()
if not args.model_return_dict:
self.model_output_class = None
else:
self.model_output_class = Seq2SeqLMOutput
@staticmethod
def attn_mask_postprocess(attention_mask):
# We create a 3D attention mask from a 2D tensor mask.
# [b, 1, s]
attention_mask_b1s = attention_mask.unsqueeze(1)
# [b, s, 1]
attention_mask_bs1 = attention_mask.unsqueeze(2)
# [b, s, s]
attention_mask_bss = attention_mask_b1s * attention_mask_bs1
# Convert attention mask to binary:
extended_attention_mask = attention_mask_bss < 0.5
return extended_attention_mask
@staticmethod
def get_decoder_mask(seq_length, device):
attention_mask = torch.tril(torch.ones((1, seq_length, seq_length), device=device))
attention_mask = attention_mask < 0.5
return attention_mask
@staticmethod
def get_enc_dec_mask(attention_mask, dec_seq_length, device):
batch_size, _ = attention_mask.shape
# We create a 3D attention mask from a 2D tensor mask.
# [b, 1, s]
attention_mask_b1s = attention_mask.unsqueeze(1)
# [b, s, 1]
attention_mask_bs1 = torch.ones((batch_size, dec_seq_length, 1), device=device)
attention_mask_bss = attention_mask_bs1 * attention_mask_b1s
extended_attention_mask = attention_mask_bss < 0.5
return extended_attention_mask
def get_batch_func(self, accelerator, megatron_dataset_flag):
def get_batch_megatron(data_iterator):
"""Build the batch."""
keys = ["text_enc", "text_dec", "labels", "loss_mask", "enc_mask", "dec_mask", "enc_dec_mask"]
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_enc = data_b["text_enc"].long()
tokens_dec = data_b["text_dec"].long()
labels = data_b["labels"].long()
loss_mask = data_b["loss_mask"].float()
enc_mask = data_b["enc_mask"] < 0.5
dec_mask = data_b["dec_mask"] < 0.5
enc_dec_mask = data_b["enc_dec_mask"] < 0.5
return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask, enc_dec_mask
def get_batch_transformer(data_iterator):
"""Build the batch."""
data = next(data_iterator)
data = send_to_device(data, torch.cuda.current_device())
tokens_enc = data["input_ids"].long()
labels = data["labels"].long()
loss_mask = (labels != -100).to(torch.float)
if "decoder_input_ids" in data:
tokens_dec = data["decoder_input_ids"].long()
else:
tokens_dec = labels.new_zeros(labels.shape, device=labels.device, dtype=torch.long)
tokens_dec[..., 1:] = labels[..., :-1].clone()
tokens_dec[..., 0] = 0
tokens_dec.masked_fill_(tokens_dec == -100, 0)
enc_mask = T5TrainStep.attn_mask_postprocess(data["attention_mask"].long())
dec_mask = T5TrainStep.get_decoder_mask(tokens_dec.shape[1], tokens_dec.device)
enc_dec_mask = T5TrainStep.get_enc_dec_mask(
data["attention_mask"].long(), tokens_dec.shape[1], tokens_dec.device
)
return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask, enc_dec_mask
if accelerator.state.megatron_lm_plugin.custom_get_batch_function is not None:
return accelerator.state.megatron_lm_plugin.custom_get_batch_function
if megatron_dataset_flag:
try:
# Use '--no-use-pep517 -e' to pip install nvidia's megatron from source
from pretrain_t5 import get_batch
return get_batch
except ImportError:
pass
return get_batch_megatron
else:
return get_batch_transformer
def get_loss_func(self, accelerator):
def loss_func(loss_mask, output_tensor):
lm_loss_ = output_tensor.float()
lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
loss = lm_loss
averaged_losses = average_losses_across_data_parallel_group([lm_loss])
return loss, {"lm loss": averaged_losses[0]}
if accelerator.state.megatron_lm_plugin.custom_loss_function is not None:
return accelerator.state.megatron_lm_plugin.custom_loss_function
return loss_func
def get_forward_step_func(self):
def forward_step(data_iterator, model):
"""Forward step."""
# Get the batch.
tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask = self.get_batch(
data_iterator
)
# Forward model lm_labels
output_tensor = model(
tokens_enc, tokens_dec, enc_mask, dec_mask, enc_dec_mask, tokentype_ids=None, lm_labels=lm_labels
)
return output_tensor, partial(self.loss_func, loss_mask)
return forward_step
def finish_mpu_init():
# torch.distributed initialization
args = get_args()
# Pytorch distributed.
_initialize_distributed()
# Random seeds for reproducibility.
if args.rank == 0:
print(f"> setting random seeds to {args.seed} ...")
_set_random_seed(args.seed, args.data_parallel_random_init)
# intialize megatron setup
def initialize(accelerator, extra_args_provider=None, args_defaults={}):
accelerator.print("Initializing Megatron-LM")
assert torch.cuda.is_available(), "Megatron requires CUDA."
# Parse arguments
args = parse_args(extra_args_provider, ignore_unknown_args=True)
# Set defaults
for key, value in args_defaults.items():
if getattr(args, key, None) is not None:
if args.rank == 0:
print(
f"WARNING: overriding default arguments for " f"{key}:{getattr(args, key)} with {key}:{value}",
flush=True,
)
setattr(args, key, value)
if args.use_checkpoint_args or args_defaults.get("use_checkpoint_args", False):
assert args.load is not None, "--use-checkpoints-args requires --load argument"
load_args_from_checkpoint(args)
validate_args(args)
# set global args, build tokenizer, and set adlr-autoresume,
# tensorboard-writer, and timers.
set_global_variables(args)
# Megatron's MPU is the master. Complete initialization right away.
finish_mpu_init()
# Autoresume.
_init_autoresume()
# Compile dependencies.
_compile_dependencies()
# Set pytorch JIT layer fusion options and warmup JIT functions.
set_jit_fusion_options()
args = get_args()
if getattr(args, "padded_vocab_size", None) is None:
args.padded_vocab_size = _vocab_size_with_padding(args.orig_vocab_size, args)
if args.model_type_name == "bert" and args.pretraining_flag and args.num_labels == 2:
args.bert_binary_head = True
else:
args.bert_binary_head = False
args.iteration = 0
class MegatronEngine(torch.nn.Module):
"""
Megatron-LM model wrapper
Args:
accelerator (:class:`~accelerate.Accelerator`): The accelerator object to use.
model: Megatron-LM model
optimizer: Megatron-LM optimizer
lr_scheduler: Megatron-LM lr scheduler
"""
def __init__(self, accelerator, model, optimizer, scheduler):
super().__init__()
self.module = model
self.base_model = model[0]
self.optimizer = optimizer
self.scheduler = scheduler
args = get_args()
if accelerator.state.megatron_lm_plugin.custom_train_step_class is not None:
self.train_step_handler = accelerator.state.megatron_lm_plugin.custom_train_step_class(
args, **accelerator.state.megatron_lm_plugin.custom_train_step_kwargs
)
elif args.model_type_name == "bert":
self.train_step_handler = BertTrainStep(accelerator, args)
elif args.model_type_name == "gpt":
self.train_step_handler = GPTTrainStep(accelerator, args)
elif args.model_type_name == "t5":
self.train_step_handler = T5TrainStep(accelerator, args)
else:
raise ValueError(f"Unsupported model type: {args.model_type_name}")
self.optimizer.skipped_iter = False
# Tracking loss.
self.total_loss_dict = {}
self.eval_total_loss_dict = {}
self.iteration = 0
self.report_memory_flag = True
self.num_floating_point_operations_so_far = 0
self.module_config = None
if args.tensorboard_dir is not None:
write_args_to_tensorboard()
def get_module_config(self):
args = get_args()
config = get_model_config(self.module[0])
# Setup some training config params
config.grad_scale_func = self.optimizer.scale_loss
if isinstance(self.module[0], LocalDDP) and args.overlap_grad_reduce:
assert config.no_sync_func is None, (
"When overlap_grad_reduce is True, config.no_sync_func must be None; "
"a custom no_sync_func is not supported when overlapping grad-reduce"
)
config.no_sync_func = [model_chunk.no_sync for model_chunk in self.module]
if len(self.module) == 1:
config.no_sync_func = config.no_sync_func[0]
if args.delay_grad_reduce:
config.grad_sync_func = [model_chunk.start_grad_sync for model_chunk in self.module]
if len(self.module) == 1:
config.grad_sync_func = config.grad_sync_func[0]
if args.overlap_param_gather and args.delay_param_gather:
config.param_sync_func = [
lambda x: self.optimizer.finish_param_sync(model_index, x) for model_index in range(len(self.module))
]
if len(self.module) == 1:
config.param_sync_func = config.param_sync_func[0]
config.finalize_model_grads_func = finalize_model_grads
return config
def train(self):
for model_module in self.module:
model_module.train()
if self.module_config is None:
self.module_config = self.get_module_config()
self.log_eval_results()
def eval(self):
for model_module in self.module:
model_module.eval()
if self.module_config is None:
self.module_config = self.get_module_config()
def get_batch_data_iterator(self, batch_data):
args = get_args()
data_chunks = []
if len(batch_data) > 0:
if args.num_micro_batches > 1:
for i in range(0, args.num_micro_batches):
data_chunks.append(
{
k: v[i * args.micro_batch_size : (i + 1) * args.micro_batch_size]
for k, v in batch_data.items()
}
)
else:
data_chunks = [batch_data]
if len(self.module) > 1:
batch_data_iterator = (
[iter(data_chunks) for _ in range(len(self.module))]
if len(batch_data) > 0
else [None] * len(self.module)
)
else:
batch_data_iterator = iter(data_chunks) if len(batch_data) > 0 else None
return batch_data_iterator
def train_step(self, **batch_data):
"""
Training step for Megatron-LM
Args:
batch_data (:obj:`dict`): The batch data to train on.
"""
batch_data_iterator = self.get_batch_data_iterator(batch_data)
loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad = train_step(
forward_step_func=self.train_step_handler.forward_step,
data_iterator=batch_data_iterator,
model=self.module,
optimizer=self.optimizer,
opt_param_scheduler=self.scheduler,
config=self.module_config,
)
self.optimizer.skipped_iter = skipped_iter == 1
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
def eval_step(self, **batch_data):
"""
Evaluation step for Megatron-LM
Args:
batch_data (:obj:`dict`): The batch data to evaluate on.
"""
args = get_args()
batch_data_iterator = self.get_batch_data_iterator(batch_data)
forward_backward_func = get_forward_backward_func()
loss_dicts = forward_backward_func(
forward_step_func=self.train_step_handler.forward_step,
data_iterator=batch_data_iterator,
model=self.module,
num_microbatches=get_num_microbatches(),
seq_length=args.seq_length,
micro_batch_size=args.micro_batch_size,
forward_only=True,
)
# Empty unused memory
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
args.consumed_valid_samples += (
mpu.get_data_parallel_world_size() * args.micro_batch_size * get_num_microbatches()
)
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Average loss across microbatches.
loss_reduced = {}
for key in loss_dicts[0]:
losses_reduced_for_key = [x[key] for x in loss_dicts]
if len(losses_reduced_for_key[0].shape) == 0:
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
else:
loss_reduced[key] = torch.concat(losses_reduced_for_key)
return loss_reduced
return {}
def forward(self, **batch_data):
# During training, we use train_step()
# model(**batch_data) performs following operations by delegating it to `self.train_step`:
# 1. Prepare **batch_data for Tendor, Pipeline and Model Parallelism
# 2. Set grad to zero.
# 3. forward pass and backward pass using Pipeline Parallelism
# 4. Empty unused memory.
# 5. Reduce gradients.
# 6. Update parameters.
# 7. Gather params when using Distributed Optimizer (Data Parallelism).
# 8. Update learning rate if scheduler is specified.
# 9. Empty unused memory.
# 10. Average loss across microbatches and across DP ranks.
#
# During evaluation, we use eval_step()
args = get_args()
if self.module[0].training:
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = self.train_step(**batch_data)
self.iteration += 1
batch_size = mpu.get_data_parallel_world_size() * args.micro_batch_size * get_num_microbatches()
args.consumed_train_samples += batch_size
self.num_floating_point_operations_so_far += num_floating_point_operations(args, batch_size)
if args.tensorboard_dir is not None:
# Logging.
loss_scale = self.optimizer.get_loss_scale().item()
params_norm = None
if args.log_params_norm:
params_norm = calc_params_l2_norm(self.model)
self.report_memory_flag = training_log(
loss_dict,
self.total_loss_dict,
self.optimizer.param_groups[0]["lr"],
self.iteration,
loss_scale,
self.report_memory_flag,
skipped_iter,
grad_norm,
params_norm,
num_zeros_in_grad,
)
else:
loss_dict = self.eval_step(**batch_data)
if args.tensorboard_dir is not None:
for key in loss_dict:
self.eval_total_loss_dict[key] = (
self.eval_total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
)
self.eval_total_loss_dict[key + "_num_iters"] = self.eval_total_loss_dict.get(
key + "_num_iters", torch.cuda.FloatTensor([0.0])
) + torch.cuda.FloatTensor([1.0])
loss = torch.tensor(0.0, device=torch.cuda.current_device())
for key in loss_dict:
if len(loss_dict[key].shape) == 0:
loss += loss_dict[key]
logits = None
if "logits" in loss_dict:
logits = loss_dict["logits"]
if self.train_step_handler.model_output_class is not None:
return self.train_step_handler.model_output_class(loss=loss, logits=logits)
return loss
def log_eval_results(self):
args = get_args()
if args.tensorboard_dir is None or self.iteration == 0:
return
args = get_args()
writer = get_tensorboard_writer()
string = f"validation loss at iteration {self.iteration} | "
for key in self.eval_total_loss_dict:
if key.endswith("_num_iters"):
continue
value = self.eval_total_loss_dict[key] / self.eval_total_loss_dict[key + "_num_iters"]
string += f"{key} value: {value} | "
ppl = math.exp(min(20, value.item()))
if args.pretraining_flag:
string += f"{key} PPL: {ppl} | "
if writer:
writer.add_scalar(f"{key} validation", value.item(), self.iteration)
if args.pretraining_flag:
writer.add_scalar(f"{key} validation ppl", ppl, self.iteration)
length = len(string) + 1
print_rank_last("-" * length)
print_rank_last(string)
print_rank_last("-" * length)
self.eval_total_loss_dict = {}
def save_checkpoint(self, output_dir):
self.log_eval_results()
args = get_args()
args.save = output_dir
torch.distributed.barrier()
save_checkpoint(
self.iteration,
self.module,
self.optimizer,
self.scheduler,
num_floating_point_operations_so_far=self.num_floating_point_operations_so_far,
)
torch.distributed.barrier()
def load_checkpoint(self, input_dir):
args = get_args()
args.load = input_dir
args.consumed_train_samples = 0
args.consumed_valid_samples = 0
torch.distributed.barrier()
iteration, num_floating_point_operations_so_far = load_checkpoint(self.module, self.optimizer, self.scheduler)
torch.distributed.barrier()
self.iteration = iteration
self.num_floating_point_operations_so_far = num_floating_point_operations_so_far
if args.fp16 and self.iteration == 0:
self.optimizer.reload_model_params()
def megatron_generate(
self,
inputs,
attention_mask=None,
max_length=None,
max_new_tokens=None,
num_beams=None,
temperature=None,
top_k=None,
top_p=None,
length_penalty=None,
**kwargs,
):
"""
Generate method for GPT2 model. This method is used for inference. Supports both greedy and beam search along
with sampling. Refer the Megatron-LM repo for more details
Args:
inputs (torch.Tensor): input ids
attention_mask (torch.Tensor, optional): attention mask. Defaults to None.
max_length (int, optional): max length of the generated sequence. Defaults to None.
Either this or max_new_tokens should be provided.
max_new_tokens (int, optional): max number of tokens to be generated. Defaults to None.
Either this or max_length should be provided.
num_beams (int, optional): number of beams to use for beam search. Defaults to None.
temperature (float, optional): temperature for sampling. Defaults to 1.0.
top_k (int, optional): top k tokens to consider for sampling. Defaults to 0.0.
top_p (float, optional): tokens in top p probability are considered for sampling. Defaults to 0.0.
length_penalty (float, optional): length penalty for beam search. Defaults to None.
kwargs: additional key-value arguments
"""
# checking if required arguments are passed
args = get_args()
if args.model_type_name != "gpt":
raise NotImplementedError("Generate method is not implemented for this model")
if args.data_parallel_size > 1:
raise ValueError("Generate method requires data parallelism to be 1")
if args.sequence_parallel:
raise ValueError("Generate method requires sequence parallelism to be False")
if args.recompute_granularity is not None:
raise ValueError("Checkpoint activations cannot be set for inference")
if args.vocab_file is None:
raise ValueError("Vocab file is required for inference")
# Prepare inputs
if max_length is None and max_new_tokens is None:
raise ValueError("`max_length` or `max_new_tokens` are required for inference")
if temperature is None:
temperature = 1.0
elif not (0.0 < temperature <= 100.0):
raise ValueError("temperature must be a positive number less than or equal to 100.0")
if top_k is None:
top_k = 0
elif not (0 <= top_k <= 1000):
raise ValueError("top_k must be a positive number less than or equal to 1000")
if top_p is None:
top_p = 0.0
elif top_p > 0.0 and top_k > 0.0:
raise ValueError("top_p and top_k sampling cannot be set together")
else:
if not (0.0 <= top_p <= 1.0):
raise ValueError("top_p must be less than or equal to 1.0")
top_p_decay = kwargs.get("top_p_decay", 0.0)
if not (0.0 <= top_p_decay <= 1.0):
raise ValueError("top_p_decay must be less than or equal to 1.0")
top_p_bound = kwargs.get("top_p_bound", 0.0)
if not (0.0 <= top_p_bound <= 1.0):
raise ValueError("top_p_bound must be less than or equal to 1.0")
add_BOS = kwargs.get("add_BOS", False)
if not (isinstance(add_BOS, bool)):
raise ValueError("add_BOS must be a boolean")
beam_width = num_beams
if beam_width is not None:
if not isinstance(beam_width, int):
raise ValueError("beam_width must be an integer")
if beam_width < 1:
raise ValueError("beam_width must be greater than 0")
if inputs.shape[0] > 1:
return "When doing beam_search, batch size must be 1"
tokenizer = get_tokenizer()
stop_token = kwargs.get("stop_token", tokenizer.eod)
if stop_token is not None:
if not isinstance(stop_token, int):
raise ValueError("stop_token must be an integer")
if length_penalty is None:
length_penalty = 1.0
sizes_list = None
prompts_tokens_tensor = None
prompts_length_tensor = None
if torch.distributed.get_rank() == 0:
# Get the prompts length.
if attention_mask is None:
prompts_length_tensor = torch.cuda.LongTensor([inputs.shape[1]] * inputs.shape[0])
else:
prompts_length_tensor = attention_mask.sum(axis=-1).cuda()
if max_new_tokens is None:
max_new_tokens = max_length - inputs.shape[1]
if max_new_tokens <= 0:
raise ValueError("max_new_tokens must be greater than 0")
if add_BOS:
max_length = max_new_tokens + inputs.shape[1] + 1
# making sure that `max_length` is a multiple of 4 to leverage fused kernels
max_length = 4 * math.ceil(max_length / 4)
max_new_tokens = max_length - (inputs.shape[1] + 1)
padding = torch.cuda.LongTensor([[tokenizer.eod] * max_new_tokens] * inputs.shape[0])
prompts_tokens_tensor = torch.concat(
[torch.unsqueeze(padding[:, 0], axis=-1), inputs.cuda(), padding], axis=-1
)
else:
# making sure that `max_length` is a multiple of 4 to leverage fused kernels
max_length = max_new_tokens + inputs.shape[1]
max_length = 4 * math.ceil(max_length / 4)
max_new_tokens = max_length - inputs.shape[1]
padding = torch.cuda.LongTensor([[tokenizer.eod] * max_new_tokens] * inputs.shape[0])
prompts_tokens_tensor = torch.concat([inputs.cuda(), padding], axis=-1)
# We need the sizes of these tensors for the boradcast
sizes_list = [
prompts_tokens_tensor.size(0), # Batch size
prompts_tokens_tensor.size(1),
] # Sequence lenght
# First, broadcast the sizes.
sizes_tensor = broadcast_int_list(2, int_list=sizes_list, rank=0)
# Now that we have the sizes, we can boradcast the tokens
# and length tensors.
sizes = sizes_tensor.tolist()
context_tokens_tensor = broadcast_tensor(sizes, torch.int64, tensor=prompts_tokens_tensor, rank=0)
context_length_tensor = broadcast_tensor(sizes[0], torch.int64, tensor=prompts_length_tensor, rank=0)
# Run the inference
random_seed = kwargs.get("random_seed", 0)
torch.random.manual_seed(random_seed)
unwrapped_model = unwrap_model(self.base_model, (torchDDP, LocalDDP, Float16Module))
if beam_width is not None:
tokens, _ = beam_search_and_return_on_first_stage(
unwrapped_model,
context_tokens_tensor,
context_length_tensor,
beam_width,
stop_token=stop_token,
num_return_gen=1,
length_penalty=length_penalty,
)
else:
tokens, _, _ = generate_tokens_probs_and_return_on_first_stage(
unwrapped_model,
context_tokens_tensor,
context_length_tensor,
return_output_log_probs=False,
top_k=top_k,
top_p=top_p,
top_p_decay=top_p_decay,
top_p_bound=top_p_bound,
temperature=temperature,
use_eod_token_for_early_termination=True,
)
return tokens
# other utilities
def avg_losses_across_data_parallel_group(losses):
"""
Average losses across data parallel group.
Args:
losses (List[Tensor]): List of losses to average across data parallel group.
"""
return average_losses_across_data_parallel_group(losses)
def gather_across_data_parallel_groups(tensor):
"""
Recursively gather tensor in a nested list/tuple/dictionary of tensors from data parallel ranks.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to gather across data parallel ranks.
"""
def _gpu_gather_one(tensor):
if tensor.ndim == 0:
tensor = tensor.clone()[None]
output_tensors = [
torch.empty_like(tensor)
for _ in range(torch.distributed.get_world_size(group=mpu.get_data_parallel_group()))
]
torch.distributed.all_gather(output_tensors, tensor, group=mpu.get_data_parallel_group())
return torch.cat(output_tensors, dim=0)
return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)
|