Spaces:
Runtime error
Runtime error
File size: 10,276 Bytes
8a6cf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import os
from copy import deepcopy
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
class HfDeepSpeedConfig:
"""
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
A `weakref` of this object is stored in the module's globals to be able to access the config from areas where
things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore
it's important that this object remains alive while the program is still running.
[`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration
with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic
the DeepSpeed configuration is not modified in any way.
Args:
config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict.
"""
def __init__(self, config_file_or_dict):
if isinstance(config_file_or_dict, dict):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
config = deepcopy(config_file_or_dict)
elif os.path.exists(config_file_or_dict):
with open(config_file_or_dict, encoding="utf-8") as f:
config = json.load(f)
else:
try:
config_decoded = base64.urlsafe_b64decode(config_file_or_dict).decode("utf-8")
config = json.loads(config_decoded)
except (UnicodeDecodeError, AttributeError, ValueError):
raise ValueError(
f"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}"
)
self.config = config
self.set_stage_and_offload()
def set_stage_and_offload(self):
# zero stage - this is done as early as possible, before model is created, to allow
# ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object
# during ``zero.Init()`` which needs to know the dtype, and some other hparams.
self._stage = self.get_value("zero_optimization.stage", -1)
# offload
self._offload = False
if self.is_zero2() or self.is_zero3():
offload_devices_valid = set(["cpu", "nvme"])
offload_devices = set(
[
self.get_value("zero_optimization.offload_optimizer.device"),
self.get_value("zero_optimization.offload_param.device"),
]
)
if len(offload_devices & offload_devices_valid) > 0:
self._offload = True
def find_config_node(self, ds_key_long):
config = self.config
# find the config node of interest if it exists
nodes = ds_key_long.split(".")
ds_key = nodes.pop()
for node in nodes:
config = config.get(node)
if config is None:
return None, ds_key
return config, ds_key
def get_value(self, ds_key_long, default=None):
"""
Returns the set value or `default` if no value is set
"""
config, ds_key = self.find_config_node(ds_key_long)
if config is None:
return default
return config.get(ds_key, default)
def del_config_sub_tree(self, ds_key_long, must_exist=False):
"""
Deletes a sub-section of the config file if it's found.
Unless `must_exist` is `True` the section doesn't have to exist.
"""
config = self.config
# find the config node of interest if it exists
nodes = ds_key_long.split(".")
for node in nodes:
parent_config = config
config = config.get(node)
if config is None:
if must_exist:
raise ValueError(f"Can't find {ds_key_long} entry in the config: {self.config}")
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(node)
def is_true(self, ds_key_long):
"""
Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very
specific question of whether the value is set to `True` (and it's not set to `False`` or isn't set).
"""
value = self.get_value(ds_key_long)
return False if value is None else bool(value)
def is_false(self, ds_key_long):
"""
Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very
specific question of whether the value is set to `False` (and it's not set to `True`` or isn't set).
"""
value = self.get_value(ds_key_long)
return False if value is None else not bool(value)
def is_zero2(self):
return self._stage == 2
def is_zero3(self):
return self._stage == 3
def is_offload(self):
return self._offload
class DeepSpeedEngineWrapper:
"""
Internal wrapper for deepspeed.runtime.engine.DeepSpeedEngine. This is used to follow conventional training loop.
Args:
engine (deepspeed.runtime.engine.DeepSpeedEngine): deepspeed engine to wrap
"""
def __init__(self, engine):
self.engine = engine
def backward(self, loss, **kwargs):
# runs backpropagation and handles mixed precision
self.engine.backward(loss, **kwargs)
# Deepspeed's `engine.step` performs the following operations:
# - gradient accumulation check
# - gradient clipping
# - optimizer step
# - zero grad
# - checking overflow
# - lr_scheduler step (only if engine.lr_scheduler is not None)
self.engine.step()
# and this plugin overrides the above calls with no-ops when Accelerate runs under
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
# training loop that works transparently under many training regimes.
class DeepSpeedOptimizerWrapper(AcceleratedOptimizer):
"""
Internal wrapper around a deepspeed optimizer.
Args:
optimizer (`torch.optim.optimizer.Optimizer`):
The optimizer to wrap.
"""
def __init__(self, optimizer):
super().__init__(optimizer, device_placement=False, scaler=None)
self.__has_overflow__ = hasattr(self.optimizer, "overflow")
def zero_grad(self, set_to_none=None):
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
def step(self):
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
@property
def step_was_skipped(self):
"""Whether or not the optimizer step was done, or skipped because of gradient overflow."""
if self.__has_overflow__:
return self.optimizer.overflow
return False
class DeepSpeedSchedulerWrapper(AcceleratedScheduler):
"""
Internal wrapper around a deepspeed scheduler.
Args:
scheduler (`torch.optim.lr_scheduler.LambdaLR`):
The scheduler to wrap.
optimizers (one or a list of `torch.optim.Optimizer`):
"""
def __init__(self, scheduler, optimizers):
super().__init__(scheduler, optimizers)
def step(self):
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
class DummyOptim:
"""
Dummy optimizer presents model parameters or param groups, this is primarily used to follow conventional training
loop when optimizer config is specified in the deepspeed config file.
Args:
lr (float):
Learning rate.
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
weight_decay (float):
Weight decay.
**kwargs (additional keyword arguments, *optional*):
Other arguments.
"""
def __init__(self, params, lr=0.001, weight_decay=0, **kwargs):
self.params = params
self.lr = lr
self.weight_decay = weight_decay
self.kwargs = kwargs
class DummyScheduler:
"""
Dummy scheduler presents model parameters or param groups, this is primarily used to follow conventional training
loop when scheduler config is specified in the deepspeed config file.
Args:
optimizer (`torch.optim.optimizer.Optimizer`):
The optimizer to wrap.
total_num_steps (int, *optional*):
Total number of steps.
warmup_num_steps (int, *optional*):
Number of steps for warmup.
lr_scheduler_callable (callable, *optional*):
A callable function that creates an LR Scheduler. It accepts only one argument `optimizer`.
**kwargs (additional keyword arguments, *optional*):
Other arguments.
"""
def __init__(self, optimizer, total_num_steps=None, warmup_num_steps=0, lr_scheduler_callable=None, **kwargs):
self.optimizer = optimizer
self.total_num_steps = total_num_steps
self.warmup_num_steps = warmup_num_steps
self.lr_scheduler_callable = lr_scheduler_callable
self.kwargs = kwargs
|