Spaces:
Runtime error
Runtime error
File size: 6,581 Bytes
8a6cf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
PROFILE_PATTERN_NAME,
RNG_STATE_NAME,
SAFE_MODEL_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_PATTERN_NAME,
SAMPLER_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_DISTRIBUTED_OPERATION_TYPES,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
WEIGHTS_PATTERN_NAME,
)
from .dataclasses import (
AutocastKwargs,
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DataLoaderConfiguration,
DDPCommunicationHookType,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FP8RecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProfileKwargs,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
add_model_config_to_megatron_parser,
)
from .environment import (
are_libraries_initialized,
check_cuda_p2p_ib_support,
check_fp8_capability,
convert_dict_to_env_variables,
get_cpu_distributed_information,
get_gpu_info,
get_int_from_env,
parse_choice_from_env,
parse_flag_from_env,
set_numa_affinity,
str_to_bool,
)
from .imports import (
get_ccl_version,
is_4bit_bnb_available,
is_8bit_bnb_available,
is_aim_available,
is_bf16_available,
is_bnb_available,
is_boto3_available,
is_ccl_available,
is_clearml_available,
is_comet_ml_available,
is_cuda_available,
is_datasets_available,
is_deepspeed_available,
is_dvclive_available,
is_fp8_available,
is_import_timer_available,
is_ipex_available,
is_lomo_available,
is_megatron_lm_available,
is_mlflow_available,
is_mlu_available,
is_mps_available,
is_msamp_available,
is_npu_available,
is_pandas_available,
is_peft_available,
is_pippy_available,
is_pynvml_available,
is_pytest_available,
is_rich_available,
is_sagemaker_available,
is_schedulefree_available,
is_tensorboard_available,
is_timm_available,
is_torch_xla_available,
is_torchvision_available,
is_transformer_engine_available,
is_transformers_available,
is_triton_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
calculate_maximum_sizes,
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
is_peft_model,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
CannotPadNestedTensorWarning,
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fp32,
convert_to_fp32,
copy_tensor_to_devices,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
ignorant_find_batch_size,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
pad_input_tensors,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_4bit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, merge_fsdp_weights, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
# For docs
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
T5TrainStep,
avg_losses_across_data_parallel_group,
)
if is_megatron_lm_available():
from .megatron_lm import (
MegatronEngine,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model_optimizer_scheduler as megatron_lm_prepare_model_optimizer_scheduler
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
check_os_kernel,
clean_state_dict_for_safetensors,
clear_environment,
convert_bytes,
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
recursive_getattr,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
|