File size: 3,035 Bytes
8a6cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

from accelerate.utils import ComputeEnvironment

from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file  # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment  # noqa: F401
from .sagemaker import get_sagemaker_input


description = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"


def get_user_input():
    compute_environment = _ask_options(
        "In which compute environment are you running?",
        ["This machine", "AWS (Amazon SageMaker)"],
        _convert_compute_environment,
    )
    if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
        config = get_sagemaker_input()
    else:
        config = get_cluster_input()
    return config


def config_command_parser(subparsers=None):
    if subparsers is not None:
        parser = subparsers.add_parser("config", description=description)
    else:
        parser = argparse.ArgumentParser("Accelerate config command", description=description)

    parser.add_argument(
        "--config_file",
        default=None,
        help=(
            "The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
            "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
            "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
            "with 'huggingface'."
        ),
    )

    if subparsers is not None:
        parser.set_defaults(func=config_command)
    return parser


def config_command(args):
    config = get_user_input()
    if args.config_file is not None:
        config_file = args.config_file
    else:
        if not os.path.isdir(cache_dir):
            os.makedirs(cache_dir)
        config_file = default_yaml_config_file

    if config_file.endswith(".json"):
        config.to_json_file(config_file)
    else:
        config.to_yaml_file(config_file)
    print(f"accelerate configuration saved at {config_file}")


def main():
    parser = config_command_parser()
    args = parser.parse_args()
    config_command(args)


if __name__ == "__main__":
    main()