Spaces:
Sleeping
Sleeping
File size: 3,490 Bytes
977063a 5051da6 977063a 5051da6 977063a 5051da6 977063a 5051da6 977063a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import subprocess
import spaces
import torch
import os
import re
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' 🤔
@spaces.GPU
def run_evaluation(model_name):
print(zero.device) # <-- 'cuda:0' 🤗
results = []
# Use the secret HF token from the Hugging Face space
if "HF_TOKEN" not in os.environ:
return "Error: HF_TOKEN not found in environment variables."
manifest_process = None
try:
# Start manifest server in background with explicit CUDA_VISIBLE_DEVICES
manifest_cmd = f"""
CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} cd duckdb-nsql/ &&
python -m manifest.api.app
--model_type huggingface
--model_generation_type text-generation
--model_name_or_path {model_name}
--fp16
--device 0
"""
manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
results.append("Started manifest server in background.")
# Run inference
inference_cmd = f"""
cd duckdb-nsql/ &&
python eval/predict.py
predict
eval/data/dev.json
eval/data/tables.json
--output-dir output/
--stop-tokens ';'
--overwrite-manifest
--manifest-client huggingface
--manifest-connection http://localhost:5000
--prompt-format duckdbinstgraniteshort
"""
inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True)
results.append("Inference completed.")
# Extract JSON file path from inference output
json_path_match = re.search(r'(.*\.json)', inference_result.stdout)
if not json_path_match:
raise ValueError("Could not find JSON file path in inference output")
json_file = os.path.basename(json_path_match.group(1))
results.append(f"Generated JSON file: {json_file}")
# Run evaluation
eval_cmd = f"""
cd duckdb-nsql/ &&
python eval/evaluate.py evaluate
--gold eval/data/dev.json
--db eval/data/databases/
--tables eval/data/tables.json
--output-dir output/
--pred output/{json_file}
"""
eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True)
# Extract and format metrics from eval output
metrics = eval_result.stdout
if metrics:
results.append(f"Evaluation completed:\n{metrics}")
else:
results.append("Evaluation completed, but get metrics.")
except subprocess.CalledProcessError as e:
results.append(f"Error occurred: {str(e)}")
results.append(f"Command output: {e.output}")
except Exception as e:
results.append(f"An unexpected error occurred: {str(e)}")
finally:
# Terminate the background manifest server
if manifest_process:
manifest_process.terminate()
results.append("Terminated manifest server.")
return "\n\n".join(results)
with gr.Blocks() as demo:
gr.Markdown("# DuckDB-NSQL Evaluation App")
model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)")
start_btn = gr.Button("Start Evaluation")
output = gr.Textbox(label="Output", lines=20)
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=output)
demo.launch() |