Upload SUPIR_v0.py
Browse files- SUPIR/modules/SUPIR_v0.py +718 -0
SUPIR/modules/SUPIR_v0.py
ADDED
|
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from einops._torch_specific import allow_ops_in_compiled_graph
|
| 2 |
+
# allow_ops_in_compiled_graph()
|
| 3 |
+
import einops
|
| 4 |
+
import torch
|
| 5 |
+
import torch as th
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from einops import rearrange, repeat
|
| 8 |
+
|
| 9 |
+
from sgm.modules.diffusionmodules.util import (
|
| 10 |
+
avg_pool_nd,
|
| 11 |
+
checkpoint,
|
| 12 |
+
conv_nd,
|
| 13 |
+
linear,
|
| 14 |
+
normalization,
|
| 15 |
+
timestep_embedding,
|
| 16 |
+
zero_module,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
from sgm.modules.diffusionmodules.openaimodel import Downsample, Upsample, UNetModel, Timestep, \
|
| 20 |
+
TimestepEmbedSequential, ResBlock, AttentionBlock, TimestepBlock
|
| 21 |
+
from sgm.modules.attention import SpatialTransformer, MemoryEfficientCrossAttention, CrossAttention
|
| 22 |
+
from sgm.util import default, log_txt_as_img, exists, instantiate_from_config
|
| 23 |
+
import re
|
| 24 |
+
import torch
|
| 25 |
+
from functools import partial
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
import xformers
|
| 30 |
+
import xformers.ops
|
| 31 |
+
XFORMERS_IS_AVAILBLE = True
|
| 32 |
+
except:
|
| 33 |
+
XFORMERS_IS_AVAILBLE = False
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# dummy replace
|
| 37 |
+
def convert_module_to_f16(x):
|
| 38 |
+
pass
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def convert_module_to_f32(x):
|
| 42 |
+
pass
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class ZeroConv(nn.Module):
|
| 46 |
+
def __init__(self, label_nc, norm_nc, mask=False):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
|
| 49 |
+
self.mask = mask
|
| 50 |
+
|
| 51 |
+
def forward(self, c, h, h_ori=None):
|
| 52 |
+
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
|
| 53 |
+
if not self.mask:
|
| 54 |
+
h = h + self.zero_conv(c)
|
| 55 |
+
else:
|
| 56 |
+
h = h + self.zero_conv(c) * torch.zeros_like(h)
|
| 57 |
+
if h_ori is not None:
|
| 58 |
+
h = th.cat([h_ori, h], dim=1)
|
| 59 |
+
return h
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class ZeroSFT(nn.Module):
|
| 63 |
+
def __init__(self, label_nc, norm_nc, concat_channels=0, norm=True, mask=False):
|
| 64 |
+
super().__init__()
|
| 65 |
+
|
| 66 |
+
# param_free_norm_type = str(parsed.group(1))
|
| 67 |
+
ks = 3
|
| 68 |
+
pw = ks // 2
|
| 69 |
+
|
| 70 |
+
self.norm = norm
|
| 71 |
+
if self.norm:
|
| 72 |
+
self.param_free_norm = normalization(norm_nc + concat_channels)
|
| 73 |
+
else:
|
| 74 |
+
self.param_free_norm = nn.Identity()
|
| 75 |
+
|
| 76 |
+
nhidden = 128
|
| 77 |
+
|
| 78 |
+
self.mlp_shared = nn.Sequential(
|
| 79 |
+
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
|
| 80 |
+
nn.SiLU()
|
| 81 |
+
)
|
| 82 |
+
self.zero_mul = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
|
| 83 |
+
self.zero_add = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
|
| 84 |
+
# self.zero_mul = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)
|
| 85 |
+
# self.zero_add = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)
|
| 86 |
+
|
| 87 |
+
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
|
| 88 |
+
self.pre_concat = bool(concat_channels != 0)
|
| 89 |
+
self.mask = mask
|
| 90 |
+
|
| 91 |
+
def forward(self, c, h, h_ori=None, control_scale=1):
|
| 92 |
+
assert self.mask is False
|
| 93 |
+
if h_ori is not None and self.pre_concat:
|
| 94 |
+
h_raw = th.cat([h_ori, h], dim=1)
|
| 95 |
+
else:
|
| 96 |
+
h_raw = h
|
| 97 |
+
|
| 98 |
+
if self.mask:
|
| 99 |
+
h = h + self.zero_conv(c) * torch.zeros_like(h)
|
| 100 |
+
else:
|
| 101 |
+
h = h + self.zero_conv(c)
|
| 102 |
+
if h_ori is not None and self.pre_concat:
|
| 103 |
+
h = th.cat([h_ori, h], dim=1)
|
| 104 |
+
actv = self.mlp_shared(c)
|
| 105 |
+
gamma = self.zero_mul(actv)
|
| 106 |
+
beta = self.zero_add(actv)
|
| 107 |
+
if self.mask:
|
| 108 |
+
gamma = gamma * torch.zeros_like(gamma)
|
| 109 |
+
beta = beta * torch.zeros_like(beta)
|
| 110 |
+
h = self.param_free_norm(h) * (gamma + 1) + beta
|
| 111 |
+
if h_ori is not None and not self.pre_concat:
|
| 112 |
+
h = th.cat([h_ori, h], dim=1)
|
| 113 |
+
return h * control_scale + h_raw * (1 - control_scale)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class ZeroCrossAttn(nn.Module):
|
| 117 |
+
ATTENTION_MODES = {
|
| 118 |
+
"softmax": CrossAttention, # vanilla attention
|
| 119 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
def __init__(self, context_dim, query_dim, zero_out=True, mask=False):
|
| 123 |
+
super().__init__()
|
| 124 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
| 125 |
+
assert attn_mode in self.ATTENTION_MODES
|
| 126 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
| 127 |
+
self.attn = attn_cls(query_dim=query_dim, context_dim=context_dim, heads=query_dim//64, dim_head=64)
|
| 128 |
+
self.norm1 = normalization(query_dim)
|
| 129 |
+
self.norm2 = normalization(context_dim)
|
| 130 |
+
|
| 131 |
+
self.mask = mask
|
| 132 |
+
|
| 133 |
+
# if zero_out:
|
| 134 |
+
# # for p in self.attn.to_out.parameters():
|
| 135 |
+
# # p.detach().zero_()
|
| 136 |
+
# self.attn.to_out = zero_module(self.attn.to_out)
|
| 137 |
+
|
| 138 |
+
def forward(self, context, x, control_scale=1):
|
| 139 |
+
assert self.mask is False
|
| 140 |
+
x_in = x
|
| 141 |
+
x = self.norm1(x)
|
| 142 |
+
context = self.norm2(context)
|
| 143 |
+
b, c, h, w = x.shape
|
| 144 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
| 145 |
+
context = rearrange(context, 'b c h w -> b (h w) c').contiguous()
|
| 146 |
+
x = self.attn(x, context)
|
| 147 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 148 |
+
if self.mask:
|
| 149 |
+
x = x * torch.zeros_like(x)
|
| 150 |
+
x = x_in + x * control_scale
|
| 151 |
+
|
| 152 |
+
return x
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class GLVControl(nn.Module):
|
| 156 |
+
def __init__(
|
| 157 |
+
self,
|
| 158 |
+
in_channels,
|
| 159 |
+
model_channels,
|
| 160 |
+
out_channels,
|
| 161 |
+
num_res_blocks,
|
| 162 |
+
attention_resolutions,
|
| 163 |
+
dropout=0,
|
| 164 |
+
channel_mult=(1, 2, 4, 8),
|
| 165 |
+
conv_resample=True,
|
| 166 |
+
dims=2,
|
| 167 |
+
num_classes=None,
|
| 168 |
+
use_checkpoint=False,
|
| 169 |
+
use_fp16=False,
|
| 170 |
+
num_heads=-1,
|
| 171 |
+
num_head_channels=-1,
|
| 172 |
+
num_heads_upsample=-1,
|
| 173 |
+
use_scale_shift_norm=False,
|
| 174 |
+
resblock_updown=False,
|
| 175 |
+
use_new_attention_order=False,
|
| 176 |
+
use_spatial_transformer=False, # custom transformer support
|
| 177 |
+
transformer_depth=1, # custom transformer support
|
| 178 |
+
context_dim=None, # custom transformer support
|
| 179 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 180 |
+
legacy=True,
|
| 181 |
+
disable_self_attentions=None,
|
| 182 |
+
num_attention_blocks=None,
|
| 183 |
+
disable_middle_self_attn=False,
|
| 184 |
+
use_linear_in_transformer=False,
|
| 185 |
+
spatial_transformer_attn_type="softmax",
|
| 186 |
+
adm_in_channels=None,
|
| 187 |
+
use_fairscale_checkpoint=False,
|
| 188 |
+
offload_to_cpu=False,
|
| 189 |
+
transformer_depth_middle=None,
|
| 190 |
+
input_upscale=1,
|
| 191 |
+
):
|
| 192 |
+
super().__init__()
|
| 193 |
+
from omegaconf.listconfig import ListConfig
|
| 194 |
+
|
| 195 |
+
if use_spatial_transformer:
|
| 196 |
+
assert (
|
| 197 |
+
context_dim is not None
|
| 198 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
| 199 |
+
|
| 200 |
+
if context_dim is not None:
|
| 201 |
+
assert (
|
| 202 |
+
use_spatial_transformer
|
| 203 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
| 204 |
+
if type(context_dim) == ListConfig:
|
| 205 |
+
context_dim = list(context_dim)
|
| 206 |
+
|
| 207 |
+
if num_heads_upsample == -1:
|
| 208 |
+
num_heads_upsample = num_heads
|
| 209 |
+
|
| 210 |
+
if num_heads == -1:
|
| 211 |
+
assert (
|
| 212 |
+
num_head_channels != -1
|
| 213 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 214 |
+
|
| 215 |
+
if num_head_channels == -1:
|
| 216 |
+
assert (
|
| 217 |
+
num_heads != -1
|
| 218 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 219 |
+
|
| 220 |
+
self.in_channels = in_channels
|
| 221 |
+
self.model_channels = model_channels
|
| 222 |
+
self.out_channels = out_channels
|
| 223 |
+
if isinstance(transformer_depth, int):
|
| 224 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
| 225 |
+
elif isinstance(transformer_depth, ListConfig):
|
| 226 |
+
transformer_depth = list(transformer_depth)
|
| 227 |
+
transformer_depth_middle = default(
|
| 228 |
+
transformer_depth_middle, transformer_depth[-1]
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
if isinstance(num_res_blocks, int):
|
| 232 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 233 |
+
else:
|
| 234 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 235 |
+
raise ValueError(
|
| 236 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
| 237 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
| 238 |
+
)
|
| 239 |
+
self.num_res_blocks = num_res_blocks
|
| 240 |
+
# self.num_res_blocks = num_res_blocks
|
| 241 |
+
if disable_self_attentions is not None:
|
| 242 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 243 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 244 |
+
if num_attention_blocks is not None:
|
| 245 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 246 |
+
assert all(
|
| 247 |
+
map(
|
| 248 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
| 249 |
+
range(len(num_attention_blocks)),
|
| 250 |
+
)
|
| 251 |
+
)
|
| 252 |
+
print(
|
| 253 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 254 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 255 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 256 |
+
f"attention will still not be set."
|
| 257 |
+
) # todo: convert to warning
|
| 258 |
+
|
| 259 |
+
self.attention_resolutions = attention_resolutions
|
| 260 |
+
self.dropout = dropout
|
| 261 |
+
self.channel_mult = channel_mult
|
| 262 |
+
self.conv_resample = conv_resample
|
| 263 |
+
self.num_classes = num_classes
|
| 264 |
+
self.use_checkpoint = use_checkpoint
|
| 265 |
+
if use_fp16:
|
| 266 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
| 267 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
| 268 |
+
self.num_heads = num_heads
|
| 269 |
+
self.num_head_channels = num_head_channels
|
| 270 |
+
self.num_heads_upsample = num_heads_upsample
|
| 271 |
+
self.predict_codebook_ids = n_embed is not None
|
| 272 |
+
|
| 273 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
| 274 |
+
use_checkpoint or use_fairscale_checkpoint
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
self.use_fairscale_checkpoint = False
|
| 278 |
+
checkpoint_wrapper_fn = (
|
| 279 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
| 280 |
+
if self.use_fairscale_checkpoint
|
| 281 |
+
else lambda x: x
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
time_embed_dim = model_channels * 4
|
| 285 |
+
self.time_embed = checkpoint_wrapper_fn(
|
| 286 |
+
nn.Sequential(
|
| 287 |
+
linear(model_channels, time_embed_dim),
|
| 288 |
+
nn.SiLU(),
|
| 289 |
+
linear(time_embed_dim, time_embed_dim),
|
| 290 |
+
)
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
if self.num_classes is not None:
|
| 294 |
+
if isinstance(self.num_classes, int):
|
| 295 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 296 |
+
elif self.num_classes == "continuous":
|
| 297 |
+
print("setting up linear c_adm embedding layer")
|
| 298 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 299 |
+
elif self.num_classes == "timestep":
|
| 300 |
+
self.label_emb = checkpoint_wrapper_fn(
|
| 301 |
+
nn.Sequential(
|
| 302 |
+
Timestep(model_channels),
|
| 303 |
+
nn.Sequential(
|
| 304 |
+
linear(model_channels, time_embed_dim),
|
| 305 |
+
nn.SiLU(),
|
| 306 |
+
linear(time_embed_dim, time_embed_dim),
|
| 307 |
+
),
|
| 308 |
+
)
|
| 309 |
+
)
|
| 310 |
+
elif self.num_classes == "sequential":
|
| 311 |
+
assert adm_in_channels is not None
|
| 312 |
+
self.label_emb = nn.Sequential(
|
| 313 |
+
nn.Sequential(
|
| 314 |
+
linear(adm_in_channels, time_embed_dim),
|
| 315 |
+
nn.SiLU(),
|
| 316 |
+
linear(time_embed_dim, time_embed_dim),
|
| 317 |
+
)
|
| 318 |
+
)
|
| 319 |
+
else:
|
| 320 |
+
raise ValueError()
|
| 321 |
+
|
| 322 |
+
self.input_blocks = nn.ModuleList(
|
| 323 |
+
[
|
| 324 |
+
TimestepEmbedSequential(
|
| 325 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 326 |
+
)
|
| 327 |
+
]
|
| 328 |
+
)
|
| 329 |
+
self._feature_size = model_channels
|
| 330 |
+
input_block_chans = [model_channels]
|
| 331 |
+
ch = model_channels
|
| 332 |
+
ds = 1
|
| 333 |
+
for level, mult in enumerate(channel_mult):
|
| 334 |
+
for nr in range(self.num_res_blocks[level]):
|
| 335 |
+
layers = [
|
| 336 |
+
checkpoint_wrapper_fn(
|
| 337 |
+
ResBlock(
|
| 338 |
+
ch,
|
| 339 |
+
time_embed_dim,
|
| 340 |
+
dropout,
|
| 341 |
+
out_channels=mult * model_channels,
|
| 342 |
+
dims=dims,
|
| 343 |
+
use_checkpoint=use_checkpoint,
|
| 344 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 345 |
+
)
|
| 346 |
+
)
|
| 347 |
+
]
|
| 348 |
+
ch = mult * model_channels
|
| 349 |
+
if ds in attention_resolutions:
|
| 350 |
+
if num_head_channels == -1:
|
| 351 |
+
dim_head = ch // num_heads
|
| 352 |
+
else:
|
| 353 |
+
num_heads = ch // num_head_channels
|
| 354 |
+
dim_head = num_head_channels
|
| 355 |
+
if legacy:
|
| 356 |
+
# num_heads = 1
|
| 357 |
+
dim_head = (
|
| 358 |
+
ch // num_heads
|
| 359 |
+
if use_spatial_transformer
|
| 360 |
+
else num_head_channels
|
| 361 |
+
)
|
| 362 |
+
if exists(disable_self_attentions):
|
| 363 |
+
disabled_sa = disable_self_attentions[level]
|
| 364 |
+
else:
|
| 365 |
+
disabled_sa = False
|
| 366 |
+
|
| 367 |
+
if (
|
| 368 |
+
not exists(num_attention_blocks)
|
| 369 |
+
or nr < num_attention_blocks[level]
|
| 370 |
+
):
|
| 371 |
+
layers.append(
|
| 372 |
+
checkpoint_wrapper_fn(
|
| 373 |
+
AttentionBlock(
|
| 374 |
+
ch,
|
| 375 |
+
use_checkpoint=use_checkpoint,
|
| 376 |
+
num_heads=num_heads,
|
| 377 |
+
num_head_channels=dim_head,
|
| 378 |
+
use_new_attention_order=use_new_attention_order,
|
| 379 |
+
)
|
| 380 |
+
)
|
| 381 |
+
if not use_spatial_transformer
|
| 382 |
+
else checkpoint_wrapper_fn(
|
| 383 |
+
SpatialTransformer(
|
| 384 |
+
ch,
|
| 385 |
+
num_heads,
|
| 386 |
+
dim_head,
|
| 387 |
+
depth=transformer_depth[level],
|
| 388 |
+
context_dim=context_dim,
|
| 389 |
+
disable_self_attn=disabled_sa,
|
| 390 |
+
use_linear=use_linear_in_transformer,
|
| 391 |
+
attn_type=spatial_transformer_attn_type,
|
| 392 |
+
use_checkpoint=use_checkpoint,
|
| 393 |
+
)
|
| 394 |
+
)
|
| 395 |
+
)
|
| 396 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 397 |
+
self._feature_size += ch
|
| 398 |
+
input_block_chans.append(ch)
|
| 399 |
+
if level != len(channel_mult) - 1:
|
| 400 |
+
out_ch = ch
|
| 401 |
+
self.input_blocks.append(
|
| 402 |
+
TimestepEmbedSequential(
|
| 403 |
+
checkpoint_wrapper_fn(
|
| 404 |
+
ResBlock(
|
| 405 |
+
ch,
|
| 406 |
+
time_embed_dim,
|
| 407 |
+
dropout,
|
| 408 |
+
out_channels=out_ch,
|
| 409 |
+
dims=dims,
|
| 410 |
+
use_checkpoint=use_checkpoint,
|
| 411 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 412 |
+
down=True,
|
| 413 |
+
)
|
| 414 |
+
)
|
| 415 |
+
if resblock_updown
|
| 416 |
+
else Downsample(
|
| 417 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 418 |
+
)
|
| 419 |
+
)
|
| 420 |
+
)
|
| 421 |
+
ch = out_ch
|
| 422 |
+
input_block_chans.append(ch)
|
| 423 |
+
ds *= 2
|
| 424 |
+
self._feature_size += ch
|
| 425 |
+
|
| 426 |
+
if num_head_channels == -1:
|
| 427 |
+
dim_head = ch // num_heads
|
| 428 |
+
else:
|
| 429 |
+
num_heads = ch // num_head_channels
|
| 430 |
+
dim_head = num_head_channels
|
| 431 |
+
if legacy:
|
| 432 |
+
# num_heads = 1
|
| 433 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 434 |
+
self.middle_block = TimestepEmbedSequential(
|
| 435 |
+
checkpoint_wrapper_fn(
|
| 436 |
+
ResBlock(
|
| 437 |
+
ch,
|
| 438 |
+
time_embed_dim,
|
| 439 |
+
dropout,
|
| 440 |
+
dims=dims,
|
| 441 |
+
use_checkpoint=use_checkpoint,
|
| 442 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 443 |
+
)
|
| 444 |
+
),
|
| 445 |
+
checkpoint_wrapper_fn(
|
| 446 |
+
AttentionBlock(
|
| 447 |
+
ch,
|
| 448 |
+
use_checkpoint=use_checkpoint,
|
| 449 |
+
num_heads=num_heads,
|
| 450 |
+
num_head_channels=dim_head,
|
| 451 |
+
use_new_attention_order=use_new_attention_order,
|
| 452 |
+
)
|
| 453 |
+
)
|
| 454 |
+
if not use_spatial_transformer
|
| 455 |
+
else checkpoint_wrapper_fn(
|
| 456 |
+
SpatialTransformer( # always uses a self-attn
|
| 457 |
+
ch,
|
| 458 |
+
num_heads,
|
| 459 |
+
dim_head,
|
| 460 |
+
depth=transformer_depth_middle,
|
| 461 |
+
context_dim=context_dim,
|
| 462 |
+
disable_self_attn=disable_middle_self_attn,
|
| 463 |
+
use_linear=use_linear_in_transformer,
|
| 464 |
+
attn_type=spatial_transformer_attn_type,
|
| 465 |
+
use_checkpoint=use_checkpoint,
|
| 466 |
+
)
|
| 467 |
+
),
|
| 468 |
+
checkpoint_wrapper_fn(
|
| 469 |
+
ResBlock(
|
| 470 |
+
ch,
|
| 471 |
+
time_embed_dim,
|
| 472 |
+
dropout,
|
| 473 |
+
dims=dims,
|
| 474 |
+
use_checkpoint=use_checkpoint,
|
| 475 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 476 |
+
)
|
| 477 |
+
),
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
self.input_upscale = input_upscale
|
| 481 |
+
self.input_hint_block = TimestepEmbedSequential(
|
| 482 |
+
zero_module(conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
def convert_to_fp16(self):
|
| 486 |
+
"""
|
| 487 |
+
Convert the torso of the model to float16.
|
| 488 |
+
"""
|
| 489 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 490 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 491 |
+
|
| 492 |
+
def convert_to_fp32(self):
|
| 493 |
+
"""
|
| 494 |
+
Convert the torso of the model to float32.
|
| 495 |
+
"""
|
| 496 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 497 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 498 |
+
|
| 499 |
+
def forward(self, x, timesteps, xt, context=None, y=None, **kwargs):
|
| 500 |
+
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
|
| 501 |
+
# x = x.to(torch.float32)
|
| 502 |
+
# timesteps = timesteps.to(torch.float32)
|
| 503 |
+
# xt = xt.to(torch.float32)
|
| 504 |
+
# context = context.to(torch.float32)
|
| 505 |
+
# y = y.to(torch.float32)
|
| 506 |
+
# print(x.dtype)
|
| 507 |
+
xt, context, y = xt.to(x.dtype), context.to(x.dtype), y.to(x.dtype)
|
| 508 |
+
|
| 509 |
+
if self.input_upscale != 1:
|
| 510 |
+
x = nn.functional.interpolate(x, scale_factor=self.input_upscale, mode='bilinear', antialias=True)
|
| 511 |
+
assert (y is not None) == (
|
| 512 |
+
self.num_classes is not None
|
| 513 |
+
), "must specify y if and only if the model is class-conditional"
|
| 514 |
+
hs = []
|
| 515 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
| 516 |
+
# import pdb
|
| 517 |
+
# pdb.set_trace()
|
| 518 |
+
emb = self.time_embed(t_emb)
|
| 519 |
+
|
| 520 |
+
if self.num_classes is not None:
|
| 521 |
+
assert y.shape[0] == xt.shape[0]
|
| 522 |
+
emb = emb + self.label_emb(y)
|
| 523 |
+
|
| 524 |
+
guided_hint = self.input_hint_block(x, emb, context)
|
| 525 |
+
|
| 526 |
+
# h = x.type(self.dtype)
|
| 527 |
+
h = xt
|
| 528 |
+
for module in self.input_blocks:
|
| 529 |
+
if guided_hint is not None:
|
| 530 |
+
h = module(h, emb, context)
|
| 531 |
+
h += guided_hint
|
| 532 |
+
guided_hint = None
|
| 533 |
+
else:
|
| 534 |
+
h = module(h, emb, context)
|
| 535 |
+
hs.append(h)
|
| 536 |
+
# print(module)
|
| 537 |
+
# print(h.shape)
|
| 538 |
+
h = self.middle_block(h, emb, context)
|
| 539 |
+
hs.append(h)
|
| 540 |
+
return hs
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
class LightGLVUNet(UNetModel):
|
| 544 |
+
def __init__(self, mode='', project_type='ZeroSFT', project_channel_scale=1,
|
| 545 |
+
*args, **kwargs):
|
| 546 |
+
super().__init__(*args, **kwargs)
|
| 547 |
+
if mode == 'XL-base':
|
| 548 |
+
cond_output_channels = [320] * 4 + [640] * 3 + [1280] * 3
|
| 549 |
+
project_channels = [160] * 4 + [320] * 3 + [640] * 3
|
| 550 |
+
concat_channels = [320] * 2 + [640] * 3 + [1280] * 4 + [0]
|
| 551 |
+
cross_attn_insert_idx = [6, 3]
|
| 552 |
+
self.progressive_mask_nums = [0, 3, 7, 11]
|
| 553 |
+
elif mode == 'XL-refine':
|
| 554 |
+
cond_output_channels = [384] * 4 + [768] * 3 + [1536] * 6
|
| 555 |
+
project_channels = [192] * 4 + [384] * 3 + [768] * 6
|
| 556 |
+
concat_channels = [384] * 2 + [768] * 3 + [1536] * 7 + [0]
|
| 557 |
+
cross_attn_insert_idx = [9, 6, 3]
|
| 558 |
+
self.progressive_mask_nums = [0, 3, 6, 10, 14]
|
| 559 |
+
else:
|
| 560 |
+
raise NotImplementedError
|
| 561 |
+
|
| 562 |
+
project_channels = [int(c * project_channel_scale) for c in project_channels]
|
| 563 |
+
|
| 564 |
+
self.project_modules = nn.ModuleList()
|
| 565 |
+
for i in range(len(cond_output_channels)):
|
| 566 |
+
# if i == len(cond_output_channels) - 1:
|
| 567 |
+
# _project_type = 'ZeroCrossAttn'
|
| 568 |
+
# else:
|
| 569 |
+
# _project_type = project_type
|
| 570 |
+
_project_type = project_type
|
| 571 |
+
if _project_type == 'ZeroSFT':
|
| 572 |
+
self.project_modules.append(ZeroSFT(project_channels[i], cond_output_channels[i],
|
| 573 |
+
concat_channels=concat_channels[i]))
|
| 574 |
+
elif _project_type == 'ZeroCrossAttn':
|
| 575 |
+
self.project_modules.append(ZeroCrossAttn(cond_output_channels[i], project_channels[i]))
|
| 576 |
+
else:
|
| 577 |
+
raise NotImplementedError
|
| 578 |
+
|
| 579 |
+
for i in cross_attn_insert_idx:
|
| 580 |
+
self.project_modules.insert(i, ZeroCrossAttn(cond_output_channels[i], concat_channels[i]))
|
| 581 |
+
# print(self.project_modules[i])
|
| 582 |
+
|
| 583 |
+
def step_progressive_mask(self):
|
| 584 |
+
if len(self.progressive_mask_nums) > 0:
|
| 585 |
+
mask_num = self.progressive_mask_nums.pop()
|
| 586 |
+
for i in range(len(self.project_modules)):
|
| 587 |
+
if i < mask_num:
|
| 588 |
+
self.project_modules[i].mask = True
|
| 589 |
+
else:
|
| 590 |
+
self.project_modules[i].mask = False
|
| 591 |
+
return
|
| 592 |
+
# print(f'step_progressive_mask, current masked layers: {mask_num}')
|
| 593 |
+
else:
|
| 594 |
+
return
|
| 595 |
+
# print('step_progressive_mask, no more masked layers')
|
| 596 |
+
# for i in range(len(self.project_modules)):
|
| 597 |
+
# print(self.project_modules[i].mask)
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
def forward(self, x, timesteps=None, context=None, y=None, control=None, control_scale=1, **kwargs):
|
| 601 |
+
"""
|
| 602 |
+
Apply the model to an input batch.
|
| 603 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 604 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 605 |
+
:param context: conditioning plugged in via crossattn
|
| 606 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 607 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 608 |
+
"""
|
| 609 |
+
assert (y is not None) == (
|
| 610 |
+
self.num_classes is not None
|
| 611 |
+
), "must specify y if and only if the model is class-conditional"
|
| 612 |
+
hs = []
|
| 613 |
+
|
| 614 |
+
_dtype = control[0].dtype
|
| 615 |
+
x, context, y = x.to(_dtype), context.to(_dtype), y.to(_dtype)
|
| 616 |
+
|
| 617 |
+
with torch.no_grad():
|
| 618 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
| 619 |
+
emb = self.time_embed(t_emb)
|
| 620 |
+
|
| 621 |
+
if self.num_classes is not None:
|
| 622 |
+
assert y.shape[0] == x.shape[0]
|
| 623 |
+
emb = emb + self.label_emb(y)
|
| 624 |
+
|
| 625 |
+
# h = x.type(self.dtype)
|
| 626 |
+
h = x
|
| 627 |
+
for module in self.input_blocks:
|
| 628 |
+
h = module(h, emb, context)
|
| 629 |
+
hs.append(h)
|
| 630 |
+
|
| 631 |
+
adapter_idx = len(self.project_modules) - 1
|
| 632 |
+
control_idx = len(control) - 1
|
| 633 |
+
h = self.middle_block(h, emb, context)
|
| 634 |
+
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
|
| 635 |
+
adapter_idx -= 1
|
| 636 |
+
control_idx -= 1
|
| 637 |
+
|
| 638 |
+
for i, module in enumerate(self.output_blocks):
|
| 639 |
+
_h = hs.pop()
|
| 640 |
+
h = self.project_modules[adapter_idx](control[control_idx], _h, h, control_scale=control_scale)
|
| 641 |
+
adapter_idx -= 1
|
| 642 |
+
# h = th.cat([h, _h], dim=1)
|
| 643 |
+
if len(module) == 3:
|
| 644 |
+
assert isinstance(module[2], Upsample)
|
| 645 |
+
for layer in module[:2]:
|
| 646 |
+
if isinstance(layer, TimestepBlock):
|
| 647 |
+
h = layer(h, emb)
|
| 648 |
+
elif isinstance(layer, SpatialTransformer):
|
| 649 |
+
h = layer(h, context)
|
| 650 |
+
else:
|
| 651 |
+
h = layer(h)
|
| 652 |
+
# print('cross_attn_here')
|
| 653 |
+
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
|
| 654 |
+
adapter_idx -= 1
|
| 655 |
+
h = module[2](h)
|
| 656 |
+
else:
|
| 657 |
+
h = module(h, emb, context)
|
| 658 |
+
control_idx -= 1
|
| 659 |
+
# print(module)
|
| 660 |
+
# print(h.shape)
|
| 661 |
+
|
| 662 |
+
h = h.type(x.dtype)
|
| 663 |
+
if self.predict_codebook_ids:
|
| 664 |
+
assert False, "not supported anymore. what the f*** are you doing?"
|
| 665 |
+
else:
|
| 666 |
+
return self.out(h)
|
| 667 |
+
|
| 668 |
+
if __name__ == '__main__':
|
| 669 |
+
from omegaconf import OmegaConf
|
| 670 |
+
|
| 671 |
+
# refiner
|
| 672 |
+
# opt = OmegaConf.load('../../options/train/debug_p2_xl.yaml')
|
| 673 |
+
#
|
| 674 |
+
# model = instantiate_from_config(opt.model.params.control_stage_config)
|
| 675 |
+
# hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64]))
|
| 676 |
+
# hint = [h.cuda() for h in hint]
|
| 677 |
+
# print(sum(map(lambda hint: hint.numel(), model.parameters())))
|
| 678 |
+
#
|
| 679 |
+
# unet = instantiate_from_config(opt.model.params.network_config)
|
| 680 |
+
# unet = unet.cuda()
|
| 681 |
+
#
|
| 682 |
+
# _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(),
|
| 683 |
+
# torch.randn([1, 2560]).cuda(), hint)
|
| 684 |
+
# print(sum(map(lambda _output: _output.numel(), unet.parameters())))
|
| 685 |
+
|
| 686 |
+
# base
|
| 687 |
+
with torch.no_grad():
|
| 688 |
+
opt = OmegaConf.load('../../options/dev/SUPIR_tmp.yaml')
|
| 689 |
+
|
| 690 |
+
model = instantiate_from_config(opt.model.params.control_stage_config)
|
| 691 |
+
model = model.cuda()
|
| 692 |
+
|
| 693 |
+
hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 2048]).cuda(),
|
| 694 |
+
torch.randn([1, 2816]).cuda())
|
| 695 |
+
|
| 696 |
+
for h in hint:
|
| 697 |
+
print(h.shape)
|
| 698 |
+
#
|
| 699 |
+
unet = instantiate_from_config(opt.model.params.network_config)
|
| 700 |
+
unet = unet.cuda()
|
| 701 |
+
_output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 2048]).cuda(),
|
| 702 |
+
torch.randn([1, 2816]).cuda(), hint)
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
# model = instantiate_from_config(opt.model.params.control_stage_config)
|
| 706 |
+
# model = model.cuda()
|
| 707 |
+
# # hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64]))
|
| 708 |
+
# hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 1280]).cuda(),
|
| 709 |
+
# torch.randn([1, 2560]).cuda())
|
| 710 |
+
# # hint = [h.cuda() for h in hint]
|
| 711 |
+
#
|
| 712 |
+
# for h in hint:
|
| 713 |
+
# print(h.shape)
|
| 714 |
+
#
|
| 715 |
+
# unet = instantiate_from_config(opt.model.params.network_config)
|
| 716 |
+
# unet = unet.cuda()
|
| 717 |
+
# _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(),
|
| 718 |
+
# torch.randn([1, 2560]).cuda(), hint)
|