Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from reactagent.agents.agent_research import ResearchAgent
|
|
5 |
from reactagent.runner import create_parser
|
6 |
from reactagent import llm
|
7 |
from reactagent.users.user import User
|
|
|
8 |
import json
|
9 |
|
10 |
|
@@ -25,22 +26,29 @@ example_text = [
|
|
25 |
# Load example JSON file
|
26 |
def load_example_data():
|
27 |
with open("example/example_data.json", "r") as json_file:
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
example_data = load_example_data()
|
31 |
|
32 |
-
with open("example/ex1_init.py", "r") as f:
|
33 |
-
predefined_code = f.read()
|
34 |
-
|
35 |
-
with open("example/ex1_final.py", "r") as f:
|
36 |
-
final_code = f.read()
|
37 |
-
|
38 |
# Function to handle the selection of an example and populate the respective fields
|
39 |
def load_example(example_id):
|
40 |
global index_ex
|
41 |
index_ex = str(example_id)
|
42 |
example = example_data[index_ex]
|
43 |
-
paper_text = 'Title:\t' + example['title'] + '\nAbstract:\t' + example['abstract']
|
44 |
return paper_text
|
45 |
|
46 |
example_text = [load_example(1), load_example(2)]
|
@@ -58,9 +66,8 @@ def load_example_and_set_index(paper_text_input):
|
|
58 |
########## Phase 1 ##############
|
59 |
|
60 |
def extract_research_elements(paper_text):
|
61 |
-
global state_extract
|
62 |
state_extract = True
|
63 |
-
global index_ex
|
64 |
example = example_data[index_ex]
|
65 |
tasks = example['research_tasks']
|
66 |
gaps = example['research_gaps']
|
@@ -73,9 +80,8 @@ def extract_research_elements(paper_text):
|
|
73 |
def generate_and_store(tasks, gaps, keywords, recent_works):
|
74 |
if (not state_extract):
|
75 |
return "", "", "", ""
|
76 |
-
global state_generate
|
77 |
state_generate = True
|
78 |
-
global index_ex
|
79 |
hypothesis = example_data[index_ex]['hypothesis']
|
80 |
experiment_plan = example_data[index_ex]['experiment_plan']
|
81 |
return hypothesis, experiment_plan, hypothesis, experiment_plan
|
@@ -83,17 +89,18 @@ def generate_and_store(tasks, gaps, keywords, recent_works):
|
|
83 |
########## Phase 2 & 3 ##############
|
84 |
def start_experiment_agent(hypothesis, plan):
|
85 |
if (not state_extract or not state_generate):
|
86 |
-
return "", ""
|
87 |
-
global state_agent
|
88 |
state_agent = True
|
89 |
-
|
90 |
-
|
|
|
|
|
91 |
|
92 |
def submit_feedback(user_feedback, history, previous_response):
|
93 |
if (not state_extract or not state_generate or not state_agent):
|
94 |
return "", "", ""
|
95 |
-
global step_index
|
96 |
-
global state_complete
|
97 |
step_index += 1
|
98 |
msg = history
|
99 |
if step_index < len(process_steps):
|
@@ -108,7 +115,7 @@ def submit_feedback(user_feedback, history, previous_response):
|
|
108 |
response = "Agent Finished."
|
109 |
|
110 |
|
111 |
-
return msg, response,
|
112 |
|
113 |
def load_phase_2_inputs(hypothesis, plan):
|
114 |
return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
|
@@ -121,7 +128,7 @@ predefined_action_log = """
|
|
121 |
Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
|
122 |
Objective: Understand the training script, including data processing, [...]
|
123 |
[Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
|
124 |
-
[Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction
|
125 |
"""
|
126 |
|
127 |
|
@@ -131,7 +138,7 @@ Train MSE: 0.543,
|
|
131 |
Test MSE: 0.688
|
132 |
Epoch [2/10],
|
133 |
Train MSE: 0.242,
|
134 |
-
Test MSE: 0.493
|
135 |
"""
|
136 |
|
137 |
# Initialize the global step_index and history
|
@@ -198,9 +205,13 @@ def handle_example_click(example_index):
|
|
198 |
return load_example(index_ex) # Simply return the text to display it in the textbox
|
199 |
|
200 |
# Gradio Interface
|
201 |
-
with gr.Blocks() as app:
|
202 |
gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
|
203 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
204 |
|
205 |
|
206 |
# Use state variables to store generated hypothesis and experiment plan
|
@@ -208,51 +219,35 @@ with gr.Blocks() as app:
|
|
208 |
experiment_plan_state = gr.State("")
|
209 |
|
210 |
########## Phase 1: Research Idea Generation Tab ##############
|
211 |
-
with gr.Tab("
|
212 |
gr.Markdown("### Extract Research Elements and Generate Research Ideas")
|
213 |
|
214 |
with gr.Row():
|
215 |
with gr.Column():
|
216 |
-
paper_text_input = gr.Textbox(value=load_example(1), lines=10, label="Research Paper Text")
|
217 |
-
extract_button = gr.Button("Extract Research Elements")
|
218 |
with gr.Row():
|
219 |
tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
|
220 |
gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
|
221 |
keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
|
222 |
recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
|
223 |
with gr.Column():
|
224 |
-
with gr.Row(): # Move the button to the top
|
225 |
-
generate_button = gr.Button("Generate Research Hypothesis & Experiment Plan")
|
226 |
with gr.Group():
|
227 |
-
gr.Markdown("### Research Idea")
|
228 |
with gr.Row():
|
229 |
hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
|
230 |
experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
|
231 |
|
232 |
-
# with gr.Row():
|
233 |
-
# example_1_button = gr.Button("Load Example 1: " + example_data["1"]["title"])
|
234 |
-
# example_2_button = gr.Button("Load Example 2: " + example_data["2"]["title"])
|
235 |
-
# Example buttons
|
236 |
gr.Examples(
|
237 |
examples=example_text,
|
238 |
inputs=[paper_text_input],
|
239 |
outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
|
240 |
fn=load_example_and_set_index,
|
241 |
run_on_click = True,
|
242 |
-
label="Click an example to load"
|
243 |
)
|
244 |
-
|
245 |
-
|
246 |
-
# # Pre-step: load example
|
247 |
-
# example_1_button.click(
|
248 |
-
# fn=lambda: load_example(1), x
|
249 |
-
# outputs=[paper_text_input]
|
250 |
-
# )
|
251 |
-
|
252 |
-
# example_2_button.click(
|
253 |
-
# fn=lambda: load_example(2),
|
254 |
-
# outputs=[paper_text_input]
|
255 |
-
# )
|
256 |
|
257 |
# Step 1: Extract Research Elements
|
258 |
extract_button.click(
|
@@ -270,24 +265,27 @@ with gr.Blocks() as app:
|
|
270 |
|
271 |
|
272 |
########## Phase 2 & 3: Experiment implementation and execution ##############
|
273 |
-
with gr.Tab("
|
274 |
gr.Markdown("### Interact with the ExperimentAgent")
|
275 |
|
276 |
with gr.Row():
|
277 |
with gr.Column():
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
280 |
|
281 |
with gr.Column():
|
282 |
-
start_exp_agnet = gr.Button("Start ExperimentAgent", elem_classes=["agent-btn"])
|
283 |
with gr.Group():
|
284 |
gr.Markdown("### Implementation + Execution Log")
|
285 |
-
log = gr.Textbox(label="Execution Log", lines=20, interactive=False)
|
286 |
-
code_display = gr.Code(label="Implementation", language="python", interactive=False)
|
287 |
|
288 |
with gr.Column():
|
289 |
-
response = gr.Textbox(label="ExperimentAgent Response", lines=30, interactive=False)
|
290 |
-
feedback = gr.Textbox(placeholder="N/A", label="User Feedback", lines=3, interactive=True)
|
291 |
submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
|
292 |
|
293 |
hypothesis_state.change(
|
@@ -300,7 +298,7 @@ with gr.Blocks() as app:
|
|
300 |
start_exp_agnet.click(
|
301 |
fn=start_experiment_agent,
|
302 |
inputs=[hypothesis_state, experiment_plan_state],
|
303 |
-
outputs=[code_display, log]
|
304 |
)
|
305 |
|
306 |
submit_button.click(
|
@@ -311,4 +309,4 @@ with gr.Blocks() as app:
|
|
311 |
|
312 |
if __name__ == "__main__":
|
313 |
step_index = 0
|
314 |
-
app.launch(share=True)
|
|
|
5 |
from reactagent.runner import create_parser
|
6 |
from reactagent import llm
|
7 |
from reactagent.users.user import User
|
8 |
+
import os
|
9 |
import json
|
10 |
|
11 |
|
|
|
26 |
# Load example JSON file
|
27 |
def load_example_data():
|
28 |
with open("example/example_data.json", "r") as json_file:
|
29 |
+
example_data = json.load(json_file)
|
30 |
+
|
31 |
+
for idx in example_data.keys():
|
32 |
+
try:
|
33 |
+
with open(os.path.join("example", example_data[idx]["code_init"]), "r") as f:
|
34 |
+
example_data[idx]["code_init"] = f.read()
|
35 |
+
except FileNotFoundError:
|
36 |
+
print(f"File not found: {example_data[idx]["code_init"]}. Skipping key: {idx}")
|
37 |
+
try:
|
38 |
+
with open(os.path.join("example", example_data[idx]["code_final"]), "r") as f:
|
39 |
+
example_data[idx]["code_final"] = f.read()
|
40 |
+
except FileNotFoundError:
|
41 |
+
print(f"File not found: {example_data[idx]["code_final"]}. Skipping key: {idx}")
|
42 |
+
return example_data
|
43 |
|
44 |
example_data = load_example_data()
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Function to handle the selection of an example and populate the respective fields
|
47 |
def load_example(example_id):
|
48 |
global index_ex
|
49 |
index_ex = str(example_id)
|
50 |
example = example_data[index_ex]
|
51 |
+
paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
|
52 |
return paper_text
|
53 |
|
54 |
example_text = [load_example(1), load_example(2)]
|
|
|
66 |
########## Phase 1 ##############
|
67 |
|
68 |
def extract_research_elements(paper_text):
|
69 |
+
global state_extract, index_ex
|
70 |
state_extract = True
|
|
|
71 |
example = example_data[index_ex]
|
72 |
tasks = example['research_tasks']
|
73 |
gaps = example['research_gaps']
|
|
|
80 |
def generate_and_store(tasks, gaps, keywords, recent_works):
|
81 |
if (not state_extract):
|
82 |
return "", "", "", ""
|
83 |
+
global state_generate, index_ex
|
84 |
state_generate = True
|
|
|
85 |
hypothesis = example_data[index_ex]['hypothesis']
|
86 |
experiment_plan = example_data[index_ex]['experiment_plan']
|
87 |
return hypothesis, experiment_plan, hypothesis, experiment_plan
|
|
|
89 |
########## Phase 2 & 3 ##############
|
90 |
def start_experiment_agent(hypothesis, plan):
|
91 |
if (not state_extract or not state_generate):
|
92 |
+
return "", "", ""
|
93 |
+
global state_agent, step_index, state_complete
|
94 |
state_agent = True
|
95 |
+
step_index = 0
|
96 |
+
state_complete = False
|
97 |
+
# predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
|
98 |
+
return example_data[index_ex]['code_init'], predefined_action_log, ""
|
99 |
|
100 |
def submit_feedback(user_feedback, history, previous_response):
|
101 |
if (not state_extract or not state_generate or not state_agent):
|
102 |
return "", "", ""
|
103 |
+
global step_index, state_complete
|
|
|
104 |
step_index += 1
|
105 |
msg = history
|
106 |
if step_index < len(process_steps):
|
|
|
115 |
response = "Agent Finished."
|
116 |
|
117 |
|
118 |
+
return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final']
|
119 |
|
120 |
def load_phase_2_inputs(hypothesis, plan):
|
121 |
return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
|
|
|
128 |
Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
|
129 |
Objective: Understand the training script, including data processing, [...]
|
130 |
[Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
|
131 |
+
[Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
|
132 |
"""
|
133 |
|
134 |
|
|
|
138 |
Test MSE: 0.688
|
139 |
Epoch [2/10],
|
140 |
Train MSE: 0.242,
|
141 |
+
Test MSE: 0.493\n
|
142 |
"""
|
143 |
|
144 |
# Initialize the global step_index and history
|
|
|
205 |
return load_example(index_ex) # Simply return the text to display it in the textbox
|
206 |
|
207 |
# Gradio Interface
|
208 |
+
with gr.Blocks(theme=gr.themes.Default()) as app:
|
209 |
gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
|
210 |
+
gr.Markdown("### ")
|
211 |
+
|
212 |
+
gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
|
213 |
+
|
214 |
+
|
215 |
|
216 |
|
217 |
# Use state variables to store generated hypothesis and experiment plan
|
|
|
219 |
experiment_plan_state = gr.State("")
|
220 |
|
221 |
########## Phase 1: Research Idea Generation Tab ##############
|
222 |
+
with gr.Tab("💡Stage 1: Research Idea Generation"):
|
223 |
gr.Markdown("### Extract Research Elements and Generate Research Ideas")
|
224 |
|
225 |
with gr.Row():
|
226 |
with gr.Column():
|
227 |
+
paper_text_input = gr.Textbox(value=load_example(1), lines=10, label="📑 Research Paper Text")
|
228 |
+
extract_button = gr.Button("🔍 Extract Research Elements")
|
229 |
with gr.Row():
|
230 |
tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
|
231 |
gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
|
232 |
keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
|
233 |
recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
|
234 |
with gr.Column():
|
235 |
+
with gr.Row(): # Move the button to the top
|
236 |
+
generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
|
237 |
with gr.Group():
|
238 |
+
gr.Markdown("### 🌟 Research Idea")
|
239 |
with gr.Row():
|
240 |
hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
|
241 |
experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
|
242 |
|
|
|
|
|
|
|
|
|
243 |
gr.Examples(
|
244 |
examples=example_text,
|
245 |
inputs=[paper_text_input],
|
246 |
outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
|
247 |
fn=load_example_and_set_index,
|
248 |
run_on_click = True,
|
249 |
+
label="⬇️ Click an example to load"
|
250 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
# Step 1: Extract Research Elements
|
253 |
extract_button.click(
|
|
|
265 |
|
266 |
|
267 |
########## Phase 2 & 3: Experiment implementation and execution ##############
|
268 |
+
with gr.Tab("🧪 Stage 2 & Stage 3: Experiment implementation and execution"):
|
269 |
gr.Markdown("### Interact with the ExperimentAgent")
|
270 |
|
271 |
with gr.Row():
|
272 |
with gr.Column():
|
273 |
+
with gr.Group():
|
274 |
+
gr.Markdown("### 🌟 Generated Research Idea")
|
275 |
+
with gr.Row():
|
276 |
+
idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
|
277 |
+
plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
|
278 |
|
279 |
with gr.Column():
|
280 |
+
start_exp_agnet = gr.Button("⚙️ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
|
281 |
with gr.Group():
|
282 |
gr.Markdown("### Implementation + Execution Log")
|
283 |
+
log = gr.Textbox(label="📖 Execution Log", lines=20, interactive=False)
|
284 |
+
code_display = gr.Code(label="🧑💻 Implementation", language="python", interactive=False)
|
285 |
|
286 |
with gr.Column():
|
287 |
+
response = gr.Textbox(label="🤖 ExperimentAgent Response", lines=30, interactive=False)
|
288 |
+
feedback = gr.Textbox(placeholder="N/A", label="🧑🔬 User Feedback", lines=3, interactive=True)
|
289 |
submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
|
290 |
|
291 |
hypothesis_state.change(
|
|
|
298 |
start_exp_agnet.click(
|
299 |
fn=start_experiment_agent,
|
300 |
inputs=[hypothesis_state, experiment_plan_state],
|
301 |
+
outputs=[code_display, log, response]
|
302 |
)
|
303 |
|
304 |
submit_button.click(
|
|
|
309 |
|
310 |
if __name__ == "__main__":
|
311 |
step_index = 0
|
312 |
+
app.launch(share=True)
|