Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Unit tests for `dataset.py`.""" | |
| from typing import Generator, List | |
| from absl.testing import absltest | |
| from absl.testing import parameterized | |
| from clrs._src import dataset | |
| from clrs._src import samplers | |
| from clrs._src import specs | |
| import numpy as np | |
| _Array = np.ndarray | |
| def _stack_to_shortest(x: List[_Array]) -> _Array: | |
| min_len = min(map(len, x)) | |
| return np.array([a[:min_len] for a in x]) | |
| def _make_sampler(algo: str) -> samplers.Sampler: | |
| sampler, _ = samplers.build_sampler( | |
| algo, | |
| seed=samplers.CLRS30['val']['seed'], | |
| num_samples=samplers.CLRS30['val']['num_samples'], | |
| length=samplers.CLRS30['val']['length'], | |
| ) | |
| return sampler | |
| def _make_iterable_sampler( | |
| algo: str, batch_size: int) -> Generator[samplers.Feedback, None, None]: | |
| sampler = _make_sampler(algo) | |
| while True: | |
| yield sampler.next(batch_size) | |
| class DatasetTest(parameterized.TestCase): | |
| def test_chunkify(self, name: str, chunk_length: int): | |
| """Test that samples are concatenated and split in chunks correctly.""" | |
| batch_size = 8 | |
| ds = _make_iterable_sampler(name, batch_size) | |
| chunked_ds = dataset.chunkify( | |
| _make_iterable_sampler(name, batch_size), | |
| chunk_length) | |
| samples = [next(ds) for _ in range(20)] | |
| cum_lengths = np.cumsum([s.features.lengths for s in samples], axis=0) | |
| n_chunks = np.amax(cum_lengths[-1]).astype(int) // chunk_length + 1 | |
| chunks = [next(chunked_ds) for _ in range(n_chunks)] | |
| # Check correctness of `is_first` and `is_last` markers | |
| start_idx = _stack_to_shortest([np.where(x)[0] for x in np.concatenate( | |
| [c.features.is_first for c in chunks]).T]).T | |
| end_idx = _stack_to_shortest([np.where(x)[0] for x in np.concatenate( | |
| [c.features.is_last for c in chunks]).T]).T | |
| assert len(start_idx) >= len(cum_lengths) | |
| start_idx = start_idx[:len(cum_lengths)] | |
| assert len(end_idx) >= len(cum_lengths) | |
| end_idx = end_idx[:len(cum_lengths)] | |
| np.testing.assert_equal(start_idx[0], 0) | |
| np.testing.assert_array_equal(cum_lengths - 1, end_idx) | |
| np.testing.assert_array_equal(cum_lengths[:-1], start_idx[1:]) | |
| # Check that inputs, outputs and hints have been copied correctly | |
| all_input = np.concatenate([c.features.inputs[0].data for c in chunks]) | |
| all_output = np.concatenate([c.outputs[0].data for c in chunks]) | |
| all_hint = np.concatenate([c.features.hints[0].data for c in chunks]) | |
| for i in range(batch_size): | |
| length0 = int(samples[0].features.lengths[i]) | |
| length1 = int(samples[1].features.lengths[i]) | |
| # Check first sample | |
| np.testing.assert_array_equal( | |
| all_input[:length0, i], | |
| np.tile(samples[0].features.inputs[0].data[i], [length0, 1])) | |
| np.testing.assert_array_equal( | |
| all_output[:length0, i], | |
| np.tile(samples[0].outputs[0].data[i], [length0, 1])) | |
| np.testing.assert_array_equal( | |
| all_hint[:length0, i], | |
| samples[0].features.hints[0].data[:length0, i]) | |
| # Check second sample | |
| np.testing.assert_array_equal( | |
| all_input[length0:length0 + length1, i], | |
| np.tile(samples[1].features.inputs[0].data[i], [length1, 1])) | |
| np.testing.assert_array_equal( | |
| all_output[length0:length0 + length1, i], | |
| np.tile(samples[1].outputs[0].data[i], [length1, 1])) | |
| np.testing.assert_array_equal( | |
| all_hint[length0:length0 + length1, i], | |
| samples[1].features.hints[0].data[:length1, i]) | |
| if __name__ == '__main__': | |
| absltest.main() | |
