MLR-Copilot / benchmarks /CLRS /env /dataset_test.py
Lim0011's picture
Upload 251 files
85e3d20 verified
raw
history blame
4.31 kB
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Unit tests for `dataset.py`."""
from typing import Generator, List
from absl.testing import absltest
from absl.testing import parameterized
from clrs._src import dataset
from clrs._src import samplers
from clrs._src import specs
import numpy as np
_Array = np.ndarray
def _stack_to_shortest(x: List[_Array]) -> _Array:
min_len = min(map(len, x))
return np.array([a[:min_len] for a in x])
def _make_sampler(algo: str) -> samplers.Sampler:
sampler, _ = samplers.build_sampler(
algo,
seed=samplers.CLRS30['val']['seed'],
num_samples=samplers.CLRS30['val']['num_samples'],
length=samplers.CLRS30['val']['length'],
)
return sampler
def _make_iterable_sampler(
algo: str, batch_size: int) -> Generator[samplers.Feedback, None, None]:
sampler = _make_sampler(algo)
while True:
yield sampler.next(batch_size)
class DatasetTest(parameterized.TestCase):
@parameterized.product(
name=specs.CLRS_30_ALGS[:5],
chunk_length=[20, 50])
def test_chunkify(self, name: str, chunk_length: int):
"""Test that samples are concatenated and split in chunks correctly."""
batch_size = 8
ds = _make_iterable_sampler(name, batch_size)
chunked_ds = dataset.chunkify(
_make_iterable_sampler(name, batch_size),
chunk_length)
samples = [next(ds) for _ in range(20)]
cum_lengths = np.cumsum([s.features.lengths for s in samples], axis=0)
n_chunks = np.amax(cum_lengths[-1]).astype(int) // chunk_length + 1
chunks = [next(chunked_ds) for _ in range(n_chunks)]
# Check correctness of `is_first` and `is_last` markers
start_idx = _stack_to_shortest([np.where(x)[0] for x in np.concatenate(
[c.features.is_first for c in chunks]).T]).T
end_idx = _stack_to_shortest([np.where(x)[0] for x in np.concatenate(
[c.features.is_last for c in chunks]).T]).T
assert len(start_idx) >= len(cum_lengths)
start_idx = start_idx[:len(cum_lengths)]
assert len(end_idx) >= len(cum_lengths)
end_idx = end_idx[:len(cum_lengths)]
np.testing.assert_equal(start_idx[0], 0)
np.testing.assert_array_equal(cum_lengths - 1, end_idx)
np.testing.assert_array_equal(cum_lengths[:-1], start_idx[1:])
# Check that inputs, outputs and hints have been copied correctly
all_input = np.concatenate([c.features.inputs[0].data for c in chunks])
all_output = np.concatenate([c.outputs[0].data for c in chunks])
all_hint = np.concatenate([c.features.hints[0].data for c in chunks])
for i in range(batch_size):
length0 = int(samples[0].features.lengths[i])
length1 = int(samples[1].features.lengths[i])
# Check first sample
np.testing.assert_array_equal(
all_input[:length0, i],
np.tile(samples[0].features.inputs[0].data[i], [length0, 1]))
np.testing.assert_array_equal(
all_output[:length0, i],
np.tile(samples[0].outputs[0].data[i], [length0, 1]))
np.testing.assert_array_equal(
all_hint[:length0, i],
samples[0].features.hints[0].data[:length0, i])
# Check second sample
np.testing.assert_array_equal(
all_input[length0:length0 + length1, i],
np.tile(samples[1].features.inputs[0].data[i], [length1, 1]))
np.testing.assert_array_equal(
all_output[length0:length0 + length1, i],
np.tile(samples[1].outputs[0].data[i], [length1, 1]))
np.testing.assert_array_equal(
all_hint[length0:length0 + length1, i],
samples[1].features.hints[0].data[:length1, i])
if __name__ == '__main__':
absltest.main()