Spaces:
Running
Running
import seaborn as sns | |
import pandas as pd | |
import os | |
from sklearn.linear_model import LogisticRegression | |
def create_new_dataframe(data, column_names): | |
new_data = {} | |
for column in column_names: | |
if column in data.columns: | |
new_data[column] = data[column] | |
else: | |
new_data[column] = pd.Series(0, index=data.index) | |
new_dataframe = pd.DataFrame(new_data) | |
return new_dataframe | |
# Loading the dataset to train a binary classfier downstream | |
df = pd.read_csv("train.csv") | |
num_examples = df.shape[0] | |
df = df.sample(frac = 1, random_state=1) | |
train_data = df[0:int(0.8*num_examples)] | |
val_data = df[int(0.8*num_examples)+1:] | |
train_data[["Deck", "Cabin_num", "Side"]] = train_data["Cabin"].str.split("/", expand=True) | |
train_data = train_data.drop('Cabin', axis=1) | |
val_data[["Deck", "Cabin_num", "Side"]] = val_data["Cabin"].str.split("/", expand=True) | |
val_data = val_data.drop('Cabin', axis=1) | |
TargetY = train_data["Transported"] | |
TargetY_test = val_data["Transported"] | |
# Expanding features to have boolean values as opposed to categorical | |
# You can check all the features as column names and try to find good correlations with the target variable | |
selectColumns = ["HomePlanet", "CryoSleep", "Destination", "VIP", "Deck", "Side"] | |
ResourceX = pd.get_dummies(train_data[selectColumns]) | |
ResourceX_test = pd.get_dummies(val_data[selectColumns]) | |
# *********************************************** | |
# In this part of the code, write and train the model on the above dataset to perform the task. | |
# Note that the output accuracy should be stored in train_accuracy and val_accuracy variables | |
# *********************************************** | |
# *********************************************** | |
# End of the main training module | |
# *********************************************** | |
print(f"Train Accuracy: {train_accuracy}") | |
print(f"Validation Accuracy: {val_accuracy}") | |
test_data = pd.read_csv('test.csv') | |
test_data[["Deck", "Cabin_num", "Side"]] = test_data["Cabin"].str.split("/", expand=True) | |
test_data = test_data.drop('Cabin', axis=1) | |
test_X = pd.get_dummies(test_data[selectColumns]) | |
test_X.insert(loc = 17, | |
column = 'Deck_T', | |
value = 0) | |
test_preds = model.predict(test_X) | |
output = pd.DataFrame({'PassengerId': test_data.PassengerId, | |
'Transported': test_preds}) | |
output.to_csv('submission.csv', index=False) |