Spaces:
Running
Running
File size: 11,426 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Probing utilities.
The dataflow for an algorithm is represented by `(stage, loc, type, data)`
"probes" that are valid under that algorithm's spec (see `specs.py`).
When constructing probes, it is convenient to represent these fields in a nested
format (`ProbesDict`) to facilate efficient contest-based look-up.
"""
import functools
from typing import Dict, List, Tuple, Union
import attr
from clrs._src import specs
import jax
import jax.numpy as jnp
import numpy as np
import tensorflow as tf
_Location = specs.Location
_Stage = specs.Stage
_Type = specs.Type
_OutputClass = specs.OutputClass
_Array = np.ndarray
_Data = Union[_Array, List[_Array]]
_DataOrType = Union[_Data, str]
ProbesDict = Dict[
str, Dict[str, Dict[str, Dict[str, _DataOrType]]]]
def _convert_to_str(element):
if isinstance(element, tf.Tensor):
return element.numpy().decode('utf-8')
elif isinstance(element, (np.ndarray, bytes)):
return element.decode('utf-8')
else:
return element
# First anotation makes this object jax.jit/pmap friendly, second one makes this
# tf.data.Datasets friendly.
@jax.tree_util.register_pytree_node_class
@attr.define
class DataPoint:
"""Describes a data point."""
_name: str
_location: str
_type_: str
data: _Array
@property
def name(self):
return _convert_to_str(self._name)
@property
def location(self):
return _convert_to_str(self._location)
@property
def type_(self):
return _convert_to_str(self._type_)
def __repr__(self):
s = f'DataPoint(name="{self.name}",\tlocation={self.location},\t'
return s + f'type={self.type_},\tdata=Array{self.data.shape})'
def tree_flatten(self):
data = (self.data,)
meta = (self.name, self.location, self.type_)
return data, meta
@classmethod
def tree_unflatten(cls, meta, data):
name, location, type_ = meta
subdata, = data
return DataPoint(name, location, type_, subdata)
class ProbeError(Exception):
pass
def initialize(spec: specs.Spec) -> ProbesDict:
"""Initializes an empty `ProbesDict` corresponding with the provided spec."""
probes = dict()
for stage in [_Stage.INPUT, _Stage.OUTPUT, _Stage.HINT]:
probes[stage] = {}
for loc in [_Location.NODE, _Location.EDGE, _Location.GRAPH]:
probes[stage][loc] = {}
for name in spec:
stage, loc, t = spec[name]
probes[stage][loc][name] = {}
probes[stage][loc][name]['data'] = []
probes[stage][loc][name]['type_'] = t
# Pytype thinks initialize() returns a ProbesDict with a str for all final
# values instead of _DataOrType.
return probes # pytype: disable=bad-return-type
def push(probes: ProbesDict, stage: str, next_probe):
"""Pushes a probe into an existing `ProbesDict`."""
for loc in [_Location.NODE, _Location.EDGE, _Location.GRAPH]:
for name in probes[stage][loc]:
if name not in next_probe:
raise ProbeError(f'Missing probe for {name}.')
if isinstance(probes[stage][loc][name]['data'], _Array):
raise ProbeError('Attemping to push to finalized `ProbesDict`.')
# Pytype thinks initialize() returns a ProbesDict with a str for all final
# values instead of _DataOrType.
probes[stage][loc][name]['data'].append(next_probe[name]) # pytype: disable=attribute-error
def finalize(probes: ProbesDict):
"""Finalizes a `ProbesDict` by stacking/squeezing `data` field."""
for stage in [_Stage.INPUT, _Stage.OUTPUT, _Stage.HINT]:
for loc in [_Location.NODE, _Location.EDGE, _Location.GRAPH]:
for name in probes[stage][loc]:
if isinstance(probes[stage][loc][name]['data'], _Array):
raise ProbeError('Attemping to re-finalize a finalized `ProbesDict`.')
if stage == _Stage.HINT:
# Hints are provided for each timestep. Stack them here.
probes[stage][loc][name]['data'] = np.stack(
probes[stage][loc][name]['data'])
else:
# Only one instance of input/output exist. Remove leading axis.
probes[stage][loc][name]['data'] = np.squeeze(
np.array(probes[stage][loc][name]['data']))
def split_stages(
probes: ProbesDict,
spec: specs.Spec,
) -> Tuple[List[DataPoint], List[DataPoint], List[DataPoint]]:
"""Splits contents of `ProbesDict` into `DataPoint`s by stage."""
inputs = []
outputs = []
hints = []
for name in spec:
stage, loc, t = spec[name]
if stage not in probes:
raise ProbeError(f'Missing stage {stage}.')
if loc not in probes[stage]:
raise ProbeError(f'Missing location {loc}.')
if name not in probes[stage][loc]:
raise ProbeError(f'Missing probe {name}.')
if 'type_' not in probes[stage][loc][name]:
raise ProbeError(f'Probe {name} missing attribute `type_`.')
if 'data' not in probes[stage][loc][name]:
raise ProbeError(f'Probe {name} missing attribute `data`.')
if t != probes[stage][loc][name]['type_']:
raise ProbeError(f'Probe {name} of incorrect type {t}.')
data = probes[stage][loc][name]['data']
if not isinstance(probes[stage][loc][name]['data'], _Array):
raise ProbeError((f'Invalid `data` for probe "{name}". ' +
'Did you forget to call `probing.finalize`?'))
if t in [_Type.MASK, _Type.MASK_ONE, _Type.CATEGORICAL]:
# pytype: disable=attribute-error
if not ((data == 0) | (data == 1) | (data == -1)).all():
raise ProbeError(f'0|1|-1 `data` for probe "{name}"')
# pytype: enable=attribute-error
if t in [_Type.MASK_ONE, _Type.CATEGORICAL
] and not np.all(np.sum(np.abs(data), -1) == 1):
raise ProbeError(f'Expected one-hot `data` for probe "{name}"')
dim_to_expand = 1 if stage == _Stage.HINT else 0
data_point = DataPoint(name=name, location=loc, type_=t,
data=np.expand_dims(data, dim_to_expand))
if stage == _Stage.INPUT:
inputs.append(data_point)
elif stage == _Stage.OUTPUT:
outputs.append(data_point)
else:
hints.append(data_point)
return inputs, outputs, hints
# pylint: disable=invalid-name
def array(A_pos: np.ndarray) -> np.ndarray:
"""Constructs an `array` probe."""
probe = np.arange(A_pos.shape[0])
for i in range(1, A_pos.shape[0]):
probe[A_pos[i]] = A_pos[i - 1]
return probe
def array_cat(A: np.ndarray, n: int) -> np.ndarray:
"""Constructs an `array_cat` probe."""
assert n > 0
probe = np.zeros((A.shape[0], n))
for i in range(A.shape[0]):
probe[i, A[i]] = 1
return probe
def heap(A_pos: np.ndarray, heap_size: int) -> np.ndarray:
"""Constructs a `heap` probe."""
assert heap_size > 0
probe = np.arange(A_pos.shape[0])
for i in range(1, heap_size):
probe[A_pos[i]] = A_pos[(i - 1) // 2]
return probe
def graph(A: np.ndarray) -> np.ndarray:
"""Constructs a `graph` probe."""
probe = (A != 0) * 1.0
probe = ((A + np.eye(A.shape[0])) != 0) * 1.0
return probe
def mask_one(i: int, n: int) -> np.ndarray:
"""Constructs a `mask_one` probe."""
assert n > i
probe = np.zeros(n)
probe[i] = 1
return probe
def strings_id(T_pos: np.ndarray, P_pos: np.ndarray) -> np.ndarray:
"""Constructs a `strings_id` probe."""
probe_T = np.zeros(T_pos.shape[0])
probe_P = np.ones(P_pos.shape[0])
return np.concatenate([probe_T, probe_P])
def strings_pair(pair_probe: np.ndarray) -> np.ndarray:
"""Constructs a `strings_pair` probe."""
n = pair_probe.shape[0]
m = pair_probe.shape[1]
probe_ret = np.zeros((n + m, n + m))
for i in range(0, n):
for j in range(0, m):
probe_ret[i, j + n] = pair_probe[i, j]
return probe_ret
def strings_pair_cat(pair_probe: np.ndarray, nb_classes: int) -> np.ndarray:
"""Constructs a `strings_pair_cat` probe."""
assert nb_classes > 0
n = pair_probe.shape[0]
m = pair_probe.shape[1]
# Add an extra class for 'this cell left blank.'
probe_ret = np.zeros((n + m, n + m, nb_classes + 1))
for i in range(0, n):
for j in range(0, m):
probe_ret[i, j + n, int(pair_probe[i, j])] = _OutputClass.POSITIVE
# Fill the blank cells.
for i_1 in range(0, n):
for i_2 in range(0, n):
probe_ret[i_1, i_2, nb_classes] = _OutputClass.MASKED
for j_1 in range(0, m):
for x in range(0, n + m):
probe_ret[j_1 + n, x, nb_classes] = _OutputClass.MASKED
return probe_ret
def strings_pi(T_pos: np.ndarray, P_pos: np.ndarray,
pi: np.ndarray) -> np.ndarray:
"""Constructs a `strings_pi` probe."""
probe = np.arange(T_pos.shape[0] + P_pos.shape[0])
for j in range(P_pos.shape[0]):
probe[T_pos.shape[0] + P_pos[j]] = T_pos.shape[0] + pi[P_pos[j]]
return probe
def strings_pos(T_pos: np.ndarray, P_pos: np.ndarray) -> np.ndarray:
"""Constructs a `strings_pos` probe."""
probe_T = np.copy(T_pos) * 1.0 / T_pos.shape[0]
probe_P = np.copy(P_pos) * 1.0 / P_pos.shape[0]
return np.concatenate([probe_T, probe_P])
def strings_pred(T_pos: np.ndarray, P_pos: np.ndarray) -> np.ndarray:
"""Constructs a `strings_pred` probe."""
probe = np.arange(T_pos.shape[0] + P_pos.shape[0])
for i in range(1, T_pos.shape[0]):
probe[T_pos[i]] = T_pos[i - 1]
for j in range(1, P_pos.shape[0]):
probe[T_pos.shape[0] + P_pos[j]] = T_pos.shape[0] + P_pos[j - 1]
return probe
@functools.partial(jnp.vectorize, signature='(n)->(n,n),(n)')
def predecessor_to_cyclic_predecessor_and_first(
pointers: jnp.ndarray) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Converts predecessor pointers to cyclic predecessor + first node mask.
This function assumes that the pointers represent a linear order of the nodes
(akin to a linked list), where each node points to its predecessor and the
first node points to itself. It returns the same pointers, except that
the first node points to the last, and a mask_one marking the first node.
Example:
```
pointers = [2, 1, 1]
P = [[0, 0, 1],
[1, 0, 0],
[0, 1, 0]],
M = [0, 1, 0]
```
Args:
pointers: array of shape [N] containing pointers. The pointers are assumed
to describe a linear order such that `pointers[i]` is the predecessor
of node `i`.
Returns:
Permutation pointers `P` of shape [N] and one-hot vector `M` of shape [N].
"""
nb_nodes = pointers.shape[-1]
pointers_one_hot = jax.nn.one_hot(pointers, nb_nodes)
# Find the index of the last node: it's the node that no other node points to.
last = pointers_one_hot.sum(-2).argmin()
# Find the first node: should be the only one pointing to itself.
first = pointers_one_hot.diagonal().argmax()
mask = jax.nn.one_hot(first, nb_nodes)
pointers_one_hot += mask[..., None] * jax.nn.one_hot(last, nb_nodes)
pointers_one_hot -= mask[..., None] * mask
return pointers_one_hot, mask
|