File size: 11,426 Bytes
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Probing utilities.

The dataflow for an algorithm is represented by `(stage, loc, type, data)`
"probes" that are valid under that algorithm's spec (see `specs.py`).

When constructing probes, it is convenient to represent these fields in a nested
format (`ProbesDict`) to facilate efficient contest-based look-up.

"""

import functools
from typing import Dict, List, Tuple, Union

import attr
from clrs._src import specs
import jax
import jax.numpy as jnp
import numpy as np
import tensorflow as tf


_Location = specs.Location
_Stage = specs.Stage
_Type = specs.Type
_OutputClass = specs.OutputClass

_Array = np.ndarray
_Data = Union[_Array, List[_Array]]
_DataOrType = Union[_Data, str]

ProbesDict = Dict[
    str, Dict[str, Dict[str, Dict[str, _DataOrType]]]]


def _convert_to_str(element):
  if isinstance(element, tf.Tensor):
    return element.numpy().decode('utf-8')
  elif isinstance(element, (np.ndarray, bytes)):
    return element.decode('utf-8')
  else:
    return element


# First anotation makes this object jax.jit/pmap friendly, second one makes this
# tf.data.Datasets friendly.
@jax.tree_util.register_pytree_node_class
@attr.define
class DataPoint:
  """Describes a data point."""

  _name: str
  _location: str
  _type_: str
  data: _Array

  @property
  def name(self):
    return _convert_to_str(self._name)

  @property
  def location(self):
    return _convert_to_str(self._location)

  @property
  def type_(self):
    return _convert_to_str(self._type_)

  def __repr__(self):
    s = f'DataPoint(name="{self.name}",\tlocation={self.location},\t'
    return s + f'type={self.type_},\tdata=Array{self.data.shape})'

  def tree_flatten(self):
    data = (self.data,)
    meta = (self.name, self.location, self.type_)
    return data, meta

  @classmethod
  def tree_unflatten(cls, meta, data):
    name, location, type_ = meta
    subdata, = data
    return DataPoint(name, location, type_, subdata)


class ProbeError(Exception):
  pass


def initialize(spec: specs.Spec) -> ProbesDict:
  """Initializes an empty `ProbesDict` corresponding with the provided spec."""
  probes = dict()
  for stage in [_Stage.INPUT, _Stage.OUTPUT, _Stage.HINT]:
    probes[stage] = {}
    for loc in [_Location.NODE, _Location.EDGE, _Location.GRAPH]:
      probes[stage][loc] = {}

  for name in spec:
    stage, loc, t = spec[name]
    probes[stage][loc][name] = {}
    probes[stage][loc][name]['data'] = []
    probes[stage][loc][name]['type_'] = t
  # Pytype thinks initialize() returns a ProbesDict with a str for all final
  # values instead of _DataOrType.
  return probes  # pytype: disable=bad-return-type


def push(probes: ProbesDict, stage: str, next_probe):
  """Pushes a probe into an existing `ProbesDict`."""
  for loc in [_Location.NODE, _Location.EDGE, _Location.GRAPH]:
    for name in probes[stage][loc]:
      if name not in next_probe:
        raise ProbeError(f'Missing probe for {name}.')
      if isinstance(probes[stage][loc][name]['data'], _Array):
        raise ProbeError('Attemping to push to finalized `ProbesDict`.')
      # Pytype thinks initialize() returns a ProbesDict with a str for all final
      # values instead of _DataOrType.
      probes[stage][loc][name]['data'].append(next_probe[name])  # pytype: disable=attribute-error


def finalize(probes: ProbesDict):
  """Finalizes a `ProbesDict` by stacking/squeezing `data` field."""
  for stage in [_Stage.INPUT, _Stage.OUTPUT, _Stage.HINT]:
    for loc in [_Location.NODE, _Location.EDGE, _Location.GRAPH]:
      for name in probes[stage][loc]:
        if isinstance(probes[stage][loc][name]['data'], _Array):
          raise ProbeError('Attemping to re-finalize a finalized `ProbesDict`.')
        if stage == _Stage.HINT:
          # Hints are provided for each timestep. Stack them here.
          probes[stage][loc][name]['data'] = np.stack(
              probes[stage][loc][name]['data'])
        else:
          # Only one instance of input/output exist. Remove leading axis.
          probes[stage][loc][name]['data'] = np.squeeze(
              np.array(probes[stage][loc][name]['data']))


def split_stages(
    probes: ProbesDict,
    spec: specs.Spec,
) -> Tuple[List[DataPoint], List[DataPoint], List[DataPoint]]:
  """Splits contents of `ProbesDict` into `DataPoint`s by stage."""

  inputs = []
  outputs = []
  hints = []

  for name in spec:
    stage, loc, t = spec[name]

    if stage not in probes:
      raise ProbeError(f'Missing stage {stage}.')
    if loc not in probes[stage]:
      raise ProbeError(f'Missing location {loc}.')
    if name not in probes[stage][loc]:
      raise ProbeError(f'Missing probe {name}.')
    if 'type_' not in probes[stage][loc][name]:
      raise ProbeError(f'Probe {name} missing attribute `type_`.')
    if 'data' not in probes[stage][loc][name]:
      raise ProbeError(f'Probe {name} missing attribute `data`.')
    if t != probes[stage][loc][name]['type_']:
      raise ProbeError(f'Probe {name} of incorrect type {t}.')

    data = probes[stage][loc][name]['data']
    if not isinstance(probes[stage][loc][name]['data'], _Array):
      raise ProbeError((f'Invalid `data` for probe "{name}". ' +
                        'Did you forget to call `probing.finalize`?'))

    if t in [_Type.MASK, _Type.MASK_ONE, _Type.CATEGORICAL]:
      # pytype: disable=attribute-error
      if not ((data == 0) | (data == 1) | (data == -1)).all():
        raise ProbeError(f'0|1|-1 `data` for probe "{name}"')
      # pytype: enable=attribute-error
      if t in [_Type.MASK_ONE, _Type.CATEGORICAL
              ] and not np.all(np.sum(np.abs(data), -1) == 1):
        raise ProbeError(f'Expected one-hot `data` for probe "{name}"')

    dim_to_expand = 1 if stage == _Stage.HINT else 0
    data_point = DataPoint(name=name, location=loc, type_=t,
                           data=np.expand_dims(data, dim_to_expand))

    if stage == _Stage.INPUT:
      inputs.append(data_point)
    elif stage == _Stage.OUTPUT:
      outputs.append(data_point)
    else:
      hints.append(data_point)

  return inputs, outputs, hints


# pylint: disable=invalid-name


def array(A_pos: np.ndarray) -> np.ndarray:
  """Constructs an `array` probe."""
  probe = np.arange(A_pos.shape[0])
  for i in range(1, A_pos.shape[0]):
    probe[A_pos[i]] = A_pos[i - 1]
  return probe


def array_cat(A: np.ndarray, n: int) -> np.ndarray:
  """Constructs an `array_cat` probe."""
  assert n > 0
  probe = np.zeros((A.shape[0], n))
  for i in range(A.shape[0]):
    probe[i, A[i]] = 1
  return probe


def heap(A_pos: np.ndarray, heap_size: int) -> np.ndarray:
  """Constructs a `heap` probe."""
  assert heap_size > 0
  probe = np.arange(A_pos.shape[0])
  for i in range(1, heap_size):
    probe[A_pos[i]] = A_pos[(i - 1) // 2]
  return probe


def graph(A: np.ndarray) -> np.ndarray:
  """Constructs a `graph` probe."""
  probe = (A != 0) * 1.0
  probe = ((A + np.eye(A.shape[0])) != 0) * 1.0
  return probe


def mask_one(i: int, n: int) -> np.ndarray:
  """Constructs a `mask_one` probe."""
  assert n > i
  probe = np.zeros(n)
  probe[i] = 1
  return probe


def strings_id(T_pos: np.ndarray, P_pos: np.ndarray) -> np.ndarray:
  """Constructs a `strings_id` probe."""
  probe_T = np.zeros(T_pos.shape[0])
  probe_P = np.ones(P_pos.shape[0])
  return np.concatenate([probe_T, probe_P])


def strings_pair(pair_probe: np.ndarray) -> np.ndarray:
  """Constructs a `strings_pair` probe."""
  n = pair_probe.shape[0]
  m = pair_probe.shape[1]
  probe_ret = np.zeros((n + m, n + m))
  for i in range(0, n):
    for j in range(0, m):
      probe_ret[i, j + n] = pair_probe[i, j]
  return probe_ret


def strings_pair_cat(pair_probe: np.ndarray, nb_classes: int) -> np.ndarray:
  """Constructs a `strings_pair_cat` probe."""
  assert nb_classes > 0
  n = pair_probe.shape[0]
  m = pair_probe.shape[1]

  # Add an extra class for 'this cell left blank.'
  probe_ret = np.zeros((n + m, n + m, nb_classes + 1))
  for i in range(0, n):
    for j in range(0, m):
      probe_ret[i, j + n, int(pair_probe[i, j])] = _OutputClass.POSITIVE

  # Fill the blank cells.
  for i_1 in range(0, n):
    for i_2 in range(0, n):
      probe_ret[i_1, i_2, nb_classes] = _OutputClass.MASKED
  for j_1 in range(0, m):
    for x in range(0, n + m):
      probe_ret[j_1 + n, x, nb_classes] = _OutputClass.MASKED
  return probe_ret


def strings_pi(T_pos: np.ndarray, P_pos: np.ndarray,
               pi: np.ndarray) -> np.ndarray:
  """Constructs a `strings_pi` probe."""
  probe = np.arange(T_pos.shape[0] + P_pos.shape[0])
  for j in range(P_pos.shape[0]):
    probe[T_pos.shape[0] + P_pos[j]] = T_pos.shape[0] + pi[P_pos[j]]
  return probe


def strings_pos(T_pos: np.ndarray, P_pos: np.ndarray) -> np.ndarray:
  """Constructs a `strings_pos` probe."""
  probe_T = np.copy(T_pos) * 1.0 / T_pos.shape[0]
  probe_P = np.copy(P_pos) * 1.0 / P_pos.shape[0]
  return np.concatenate([probe_T, probe_P])


def strings_pred(T_pos: np.ndarray, P_pos: np.ndarray) -> np.ndarray:
  """Constructs a `strings_pred` probe."""
  probe = np.arange(T_pos.shape[0] + P_pos.shape[0])
  for i in range(1, T_pos.shape[0]):
    probe[T_pos[i]] = T_pos[i - 1]
  for j in range(1, P_pos.shape[0]):
    probe[T_pos.shape[0] + P_pos[j]] = T_pos.shape[0] + P_pos[j - 1]
  return probe


@functools.partial(jnp.vectorize, signature='(n)->(n,n),(n)')
def predecessor_to_cyclic_predecessor_and_first(
    pointers: jnp.ndarray) -> Tuple[jnp.ndarray, jnp.ndarray]:
  """Converts predecessor pointers to cyclic predecessor + first node mask.

  This function assumes that the pointers represent a linear order of the nodes
  (akin to a linked list), where each node points to its predecessor and the
  first node points to itself. It returns the same pointers, except that
  the first node points to the last, and a mask_one marking the first node.

  Example:
  ```
  pointers = [2, 1, 1]
  P = [[0, 0, 1],
       [1, 0, 0],
       [0, 1, 0]],
  M = [0, 1, 0]
  ```

  Args:
    pointers: array of shape [N] containing pointers. The pointers are assumed
      to describe a linear order such that `pointers[i]` is the predecessor
      of node `i`.

  Returns:
    Permutation pointers `P` of shape [N] and one-hot vector `M` of shape [N].
  """
  nb_nodes = pointers.shape[-1]
  pointers_one_hot = jax.nn.one_hot(pointers, nb_nodes)
  # Find the index of the last node: it's the node that no other node points to.
  last = pointers_one_hot.sum(-2).argmin()
  # Find the first node: should be the only one pointing to itself.
  first = pointers_one_hot.diagonal().argmax()
  mask = jax.nn.one_hot(first, nb_nodes)
  pointers_one_hot += mask[..., None] * jax.nn.one_hot(last, nb_nodes)
  pointers_one_hot -= mask[..., None] * mask
  return pointers_one_hot, mask