Spaces:
Running
Running
File size: 28,174 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sampling utilities."""
import abc
import collections
import inspect
import types
from typing import Any, Callable, List, Optional, Tuple
from absl import logging
from clrs._src import algorithms
from clrs._src import probing
from clrs._src import specs
import jax
import numpy as np
_Array = np.ndarray
_DataPoint = probing.DataPoint
Trajectory = List[_DataPoint]
Trajectories = List[Trajectory]
Algorithm = Callable[..., Any]
Features = collections.namedtuple('Features', ['inputs', 'hints', 'lengths'])
FeaturesChunked = collections.namedtuple(
'Features', ['inputs', 'hints', 'is_first', 'is_last'])
Feedback = collections.namedtuple('Feedback', ['features', 'outputs'])
# CLRS-30 baseline spec.
CLRS30 = types.MappingProxyType({
'train': {
'num_samples': 1000,
'length': 16,
'seed': 1,
},
'val': {
'num_samples': 32,
'length': 16,
'seed': 2,
},
'test': {
'num_samples': 32,
'length': 64,
'seed': 3,
},
})
class Sampler(abc.ABC):
"""Sampler abstract base class."""
def __init__(
self,
algorithm: Algorithm,
spec: specs.Spec,
num_samples: int,
*args,
seed: Optional[int] = None,
**kwargs,
):
"""Initializes a `Sampler`.
Args:
algorithm: The algorithm to sample from
spec: The algorithm spec.
num_samples: Number of algorithm unrolls to sample. If positive, all the
samples will be generated in the constructor, and at each call
of the `next` method a batch will be randomly selected among them.
If -1, samples are generated on the fly with each call to `next`.
*args: Algorithm args.
seed: RNG seed.
**kwargs: Algorithm kwargs.
"""
# Use `RandomState` to ensure deterministic sampling across Numpy versions.
self._rng = np.random.RandomState(seed)
self._spec = spec
self._num_samples = num_samples
self._algorithm = algorithm
self._args = args
self._kwargs = kwargs
if num_samples < 0:
logging.warning('Sampling dataset on-the-fly, unlimited samples.')
# Just get an initial estimate of max hint length
self.max_steps = -1
for _ in range(1000):
data = self._sample_data(*args, **kwargs)
_, probes = algorithm(*data)
_, _, hint = probing.split_stages(probes, spec)
for dp in hint:
assert dp.data.shape[1] == 1 # batching axis
if dp.data.shape[0] > self.max_steps:
self.max_steps = dp.data.shape[0]
else:
logging.info('Creating a dataset with %i samples.', num_samples)
(self._inputs, self._outputs, self._hints,
self._lengths) = self._make_batch(num_samples, spec, 0, algorithm, *args,
**kwargs)
def _make_batch(self, num_samples: int, spec: specs.Spec, min_length: int,
algorithm: Algorithm, *args, **kwargs):
"""Generate a batch of data."""
inputs = []
outputs = []
hints = []
for _ in range(num_samples):
data = self._sample_data(*args, **kwargs)
_, probes = algorithm(*data)
inp, outp, hint = probing.split_stages(probes, spec)
inputs.append(inp)
outputs.append(outp)
hints.append(hint)
if len(hints) % 1000 == 0:
logging.info('%i samples created', len(hints))
# Batch and pad trajectories to max(T).
inputs = _batch_io(inputs)
outputs = _batch_io(outputs)
hints, lengths = _batch_hints(hints, min_length)
return inputs, outputs, hints, lengths
def next(self, batch_size: Optional[int] = None) -> Feedback:
"""Subsamples trajectories from the pre-generated dataset.
Args:
batch_size: Optional batch size. If `None`, returns entire dataset.
Returns:
Subsampled trajectories.
"""
if batch_size:
if self._num_samples < 0: # generate on the fly
inputs, outputs, hints, lengths = self._make_batch(
batch_size, self._spec, self.max_steps,
self._algorithm, *self._args, **self._kwargs)
if hints[0].data.shape[0] > self.max_steps:
logging.warning('Increasing hint lengh from %i to %i',
self.max_steps, hints[0].data.shape[0])
self.max_steps = hints[0].data.shape[0]
else:
if batch_size > self._num_samples:
raise ValueError(
f'Batch size {batch_size} > dataset size {self._num_samples}.')
# Returns a fixed-size random batch.
indices = self._rng.choice(self._num_samples, (batch_size,),
replace=True)
inputs = _subsample_data(self._inputs, indices, axis=0)
outputs = _subsample_data(self._outputs, indices, axis=0)
hints = _subsample_data(self._hints, indices, axis=1)
lengths = self._lengths[indices]
else:
# Returns the full dataset.
assert self._num_samples >= 0
inputs = self._inputs
hints = self._hints
lengths = self._lengths
outputs = self._outputs
return Feedback(Features(inputs, hints, lengths), outputs)
@abc.abstractmethod
def _sample_data(self, length: int, *args, **kwargs) -> List[_Array]:
pass
def _random_sequence(self, length, low=0.0, high=1.0):
"""Random sequence."""
return self._rng.uniform(low=low, high=high, size=(length,))
def _random_string(self, length, chars=4):
"""Random string."""
return self._rng.randint(0, high=chars, size=(length,))
def _random_er_graph(self, nb_nodes, p=0.5, directed=False, acyclic=False,
weighted=False, low=0.0, high=1.0):
"""Random Erdos-Renyi graph."""
mat = self._rng.binomial(1, p, size=(nb_nodes, nb_nodes))
if not directed:
mat *= np.transpose(mat)
elif acyclic:
mat = np.triu(mat, k=1)
p = self._rng.permutation(nb_nodes) # To allow nontrivial solutions
mat = mat[p, :][:, p]
if weighted:
weights = self._rng.uniform(low=low, high=high, size=(nb_nodes, nb_nodes))
if not directed:
weights *= np.transpose(weights)
weights = np.sqrt(weights + 1e-3) # Add epsilon to protect underflow
mat = mat.astype(float) * weights
return mat
def _random_community_graph(self, nb_nodes, k=4, p=0.5, eps=0.01,
directed=False, acyclic=False, weighted=False,
low=0.0, high=1.0):
"""Random perturbed k-community graph."""
mat = np.zeros((nb_nodes, nb_nodes))
if k > nb_nodes:
raise ValueError(f'Cannot generate graph of too many ({k}) communities.')
los, his = [], []
lo = 0
for i in range(k):
if i == k - 1:
hi = nb_nodes
else:
hi = lo + nb_nodes // k
mat[lo:hi, lo:hi] = self._random_er_graph(
hi - lo, p=p, directed=directed,
acyclic=acyclic, weighted=weighted,
low=low, high=high)
los.append(lo)
his.append(hi)
lo = hi
toggle = self._random_er_graph(nb_nodes, p=eps, directed=directed,
acyclic=acyclic, weighted=weighted,
low=low, high=high)
# Prohibit closing new cycles
for i in range(k):
for j in range(i):
toggle[los[i]:his[i], los[j]:his[j]] *= 0
mat = np.where(toggle > 0.0, (1.0 - (mat > 0.0)) * toggle, mat)
p = self._rng.permutation(nb_nodes) # To allow nontrivial solutions
mat = mat[p, :][:, p]
return mat
def _random_bipartite_graph(self, n, m, p=0.25):
"""Random bipartite graph-based flow network."""
nb_nodes = n + m + 2
s = 0
t = n + m + 1
mat = np.zeros((nb_nodes, nb_nodes))
mat[s, 1:n+1] = 1.0 # supersource
mat[n+1:n+m+1, t] = 1.0 # supersink
mat[1:n+1, n+1:n+m+1] = self._rng.binomial(1, p, size=(n, m))
return mat
def build_sampler(
name: str,
num_samples: int,
*args,
seed: Optional[int] = None,
**kwargs,
) -> Tuple[Sampler, specs.Spec]:
"""Builds a sampler. See `Sampler` documentation."""
if name not in specs.SPECS or name not in SAMPLERS:
raise NotImplementedError(f'No implementation of algorithm {name}.')
spec = specs.SPECS[name]
algorithm = getattr(algorithms, name)
sampler_class = SAMPLERS[name]
# Ignore kwargs not accepted by the sampler.
sampler_args = inspect.signature(sampler_class._sample_data).parameters # pylint:disable=protected-access
clean_kwargs = {k: kwargs[k] for k in kwargs if k in sampler_args}
if set(clean_kwargs) != set(kwargs):
logging.warning('Ignoring kwargs %s when building sampler class %s',
set(kwargs).difference(clean_kwargs), sampler_class)
sampler = sampler_class(algorithm, spec, num_samples, seed=seed,
*args, **clean_kwargs)
return sampler, spec
class SortingSampler(Sampler):
"""Sorting sampler. Generates a random sequence of U[0, 1]."""
def _sample_data(
self,
length: int,
low: float = 0.,
high: float = 1.,
):
arr = self._random_sequence(length=length, low=low, high=high)
return [arr]
class SearchSampler(Sampler):
"""Search sampler. Generates a random sequence and target (of U[0, 1])."""
def _sample_data(
self,
length: int,
low: float = 0.,
high: float = 1.,
):
arr = self._random_sequence(length=length, low=low, high=high)
arr.sort()
x = self._rng.uniform(low=low, high=high)
return [x, arr]
class MaxSubarraySampler(Sampler):
"""Maximum subarray sampler. Generates a random sequence of U[-1, 1]."""
def _sample_data(
self,
length: int,
low: float = -1.,
high: float = 1.,
):
arr = self._random_sequence(length=length, low=low, high=high)
return [arr]
class LCSSampler(Sampler):
"""Longest Common Subsequence sampler. Generates two random ATCG strings."""
def _sample_data(
self,
length: int,
length_2: Optional[int] = None,
chars: int = 4,
):
if length_2 is None:
# Assume provided length is total length.
length_2 = length // 2
length -= length_2
a = self._random_string(length=length, chars=chars)
b = self._random_string(length=length_2, chars=chars)
return [a, b]
class OptimalBSTSampler(Sampler):
"""Optimal BST sampler. Samples array of probabilities, splits it into two."""
def _sample_data(
self,
length: int,
):
tot_length = length + (length + 1)
arr = self._random_sequence(length=tot_length, low=0.0, high=1.0)
arr /= np.sum(arr)
p = arr[:length]
q = arr[length:]
return [p, q]
class ActivitySampler(Sampler):
"""Activity sampler. Samples start and finish times from U[0, 1]."""
def _sample_data(
self,
length: int,
low: float = 0.,
high: float = 1.,
):
arr_1 = self._random_sequence(length=length, low=low, high=high)
arr_2 = self._random_sequence(length=length, low=low, high=high)
return [np.minimum(arr_1, arr_2), np.maximum(arr_1, arr_2)]
class TaskSampler(Sampler):
"""Task sampler. Samples deadlines (integers) and values (U[0, 1])."""
def _sample_data(
self,
length: int,
max_deadline: Optional[int] = None,
low: float = 0.,
high: float = 1.,
):
if max_deadline is None:
max_deadline = length
d = self._random_string(length=length, chars=max_deadline) + 1
w = self._random_sequence(length=length, low=low, high=high)
return [d, w]
class DfsSampler(Sampler):
"""DFS sampler."""
def _sample_data(
self,
length: int,
p: Tuple[float, ...] = (0.5,),
):
graph = self._random_er_graph(
nb_nodes=length, p=self._rng.choice(p),
directed=True, acyclic=False, weighted=False)
return [graph]
class BfsSampler(Sampler):
"""BFS sampler."""
def _sample_data(
self,
length: int,
p: Tuple[float, ...] = (0.5,),
):
graph = self._random_er_graph(
nb_nodes=length, p=self._rng.choice(p),
directed=False, acyclic=False, weighted=False)
source_node = self._rng.choice(length)
return [graph, source_node]
class TopoSampler(Sampler):
"""Topological Sorting sampler."""
def _sample_data(
self,
length: int,
p: Tuple[float, ...] = (0.5,),
):
graph = self._random_er_graph(
nb_nodes=length, p=self._rng.choice(p),
directed=True, acyclic=True, weighted=False)
return [graph]
class ArticulationSampler(Sampler):
"""Articulation Point sampler."""
def _sample_data(
self,
length: int,
p: Tuple[float, ...] = (0.2,),
):
graph = self._random_er_graph(
nb_nodes=length, p=self._rng.choice(p), directed=False,
acyclic=False, weighted=False)
return [graph]
class MSTSampler(Sampler):
"""MST sampler for Kruskal's algorithm."""
def _sample_data(
self,
length: int,
p: Tuple[float, ...] = (0.2,), # lower p to account for class imbalance
low: float = 0.,
high: float = 1.,
):
graph = self._random_er_graph(
nb_nodes=length,
p=self._rng.choice(p),
directed=False,
acyclic=False,
weighted=True,
low=low,
high=high)
return [graph]
class BellmanFordSampler(Sampler):
"""Bellman-Ford sampler."""
def _sample_data(
self,
length: int,
p: Tuple[float, ...] = (0.5,),
low: float = 0.,
high: float = 1.,
):
graph = self._random_er_graph(
nb_nodes=length,
p=self._rng.choice(p),
directed=False,
acyclic=False,
weighted=True,
low=low,
high=high)
source_node = self._rng.choice(length)
return [graph, source_node]
class DAGPathSampler(Sampler):
"""Sampler for DAG shortest paths."""
def _sample_data(
self,
length: int,
p: Tuple[float, ...] = (0.5,),
low: float = 0.,
high: float = 1.,
):
graph = self._random_er_graph(
nb_nodes=length,
p=self._rng.choice(p),
directed=True,
acyclic=True,
weighted=True,
low=low,
high=high)
source_node = self._rng.choice(length)
return [graph, source_node]
class FloydWarshallSampler(Sampler):
"""Sampler for all-pairs shortest paths."""
def _sample_data(
self,
length: int,
p: Tuple[float, ...] = (0.5,),
low: float = 0.,
high: float = 1.,
):
graph = self._random_er_graph(
nb_nodes=length,
p=self._rng.choice(p),
directed=False,
acyclic=False,
weighted=True,
low=low,
high=high)
return [graph]
class SccSampler(Sampler):
"""Sampler for strongly connected component (SCC) tasks."""
def _sample_data(
self,
length: int,
k: int = 4,
p: Tuple[float, ...] = (0.5,),
eps: float = 0.01,
):
graph = self._random_community_graph(
nb_nodes=length, k=k, p=self._rng.choice(p), eps=eps,
directed=True, acyclic=False, weighted=False)
return [graph]
class BipartiteSampler(Sampler):
"""Sampler for bipartite matching-based flow networks."""
def _sample_data(
self,
length: int,
length_2: Optional[int] = None,
p: Tuple[float, ...] = (0.3,),
):
if length_2 is None:
# Assume provided length is total length.
length_2 = length // 2
length -= length_2
graph = self._random_bipartite_graph(n=length, m=length_2,
p=self._rng.choice(p))
return [graph, length, length_2, 0, length + length_2 + 1]
class MatcherSampler(Sampler):
"""String matching sampler; embeds needle in a random haystack."""
def _sample_data(
self,
length: int, # length of haystack + needle, i.e., total number of nodes
length_needle: Optional[int] = None,
chars: int = 4,
):
if length_needle is None:
if length < 5:
length_needle = 1
else:
length_needle = length // 5
elif length_needle < 0: # randomize needle length
length_needle = self._rng.randint(1, high=1 - length_needle)
length_haystack = length - length_needle
needle = self._random_string(length=length_needle, chars=chars)
haystack = self._random_string(length=length_haystack, chars=chars)
embed_pos = self._rng.choice(length_haystack - length_needle)
haystack[embed_pos:embed_pos + length_needle] = needle
return [haystack, needle]
class SegmentsSampler(Sampler):
"""Two-segment sampler of points from (U[0, 1], U[0, 1])."""
def _sample_data(self, length: int, low: float = 0., high: float = 1.):
del length # There are exactly four endpoints.
# Quick CCW check (ignoring collinearity) for rejection sampling
def ccw(x_a, y_a, x_b, y_b, x_c, y_c):
return (y_c - y_a) * (x_b - x_a) > (y_b - y_a) * (x_c - x_a)
def intersect(xs, ys):
return ccw(xs[0], ys[0], xs[2], ys[2], xs[3], ys[3]) != ccw(
xs[1], ys[1], xs[2], ys[2], xs[3], ys[3]) and ccw(
xs[0], ys[0], xs[1], ys[1], xs[2], ys[2]) != ccw(
xs[0], ys[0], xs[1], ys[1], xs[3], ys[3])
# Decide (with uniform probability) should this sample intersect
coin_flip = self._rng.binomial(1, 0.5)
xs = self._random_sequence(length=4, low=low, high=high)
ys = self._random_sequence(length=4, low=low, high=high)
while intersect(xs, ys) != coin_flip:
xs = self._random_sequence(length=4, low=low, high=high)
ys = self._random_sequence(length=4, low=low, high=high)
return [xs, ys]
class ConvexHullSampler(Sampler):
"""Convex hull sampler of points over a disk of radius r."""
def _sample_data(self, length: int, origin_x: float = 0.,
origin_y: float = 0., radius: float = 2.):
thetas = self._random_sequence(length=length, low=0.0, high=2.0 * np.pi)
rs = radius * np.sqrt(
self._random_sequence(length=length, low=0.0, high=1.0))
xs = rs * np.cos(thetas) + origin_x
ys = rs * np.sin(thetas) + origin_y
return [xs, ys]
SAMPLERS = {
'insertion_sort': SortingSampler,
'bubble_sort': SortingSampler,
'heapsort': SortingSampler,
'quicksort': SortingSampler,
'quickselect': SortingSampler,
'minimum': SortingSampler,
'binary_search': SearchSampler,
'find_maximum_subarray': MaxSubarraySampler,
'find_maximum_subarray_kadane': MaxSubarraySampler,
'matrix_chain_order': SortingSampler,
'lcs_length': LCSSampler,
'optimal_bst': OptimalBSTSampler,
'activity_selector': ActivitySampler,
'task_scheduling': TaskSampler,
'dfs': DfsSampler,
'topological_sort': TopoSampler,
'strongly_connected_components': SccSampler,
'articulation_points': ArticulationSampler,
'bridges': ArticulationSampler,
'bfs': BfsSampler,
'mst_kruskal': MSTSampler,
'mst_prim': BellmanFordSampler,
'bellman_ford': BellmanFordSampler,
'dag_shortest_paths': DAGPathSampler,
'dijkstra': BellmanFordSampler,
'floyd_warshall': FloydWarshallSampler,
'bipartite_matching': BipartiteSampler,
'naive_string_matcher': MatcherSampler,
'kmp_matcher': MatcherSampler,
'segments_intersect': SegmentsSampler,
'graham_scan': ConvexHullSampler,
'jarvis_march': ConvexHullSampler,
}
def _batch_io(traj_io: Trajectories) -> Trajectory:
"""Batches a trajectory of input/output samples along the time axis per probe.
Args:
traj_io: An i/o trajectory of `DataPoint`s indexed by time then probe.
Returns:
A |num probes| list of `DataPoint`s with the time axis stacked into `data`.
"""
assert traj_io # non-empty
for sample_io in traj_io:
for i, dp in enumerate(sample_io):
assert dp.data.shape[0] == 1 # batching axis
assert traj_io[0][i].name == dp.name
return jax.tree_util.tree_map(lambda *x: np.concatenate(x), *traj_io)
def _batch_hints(
traj_hints: Trajectories, min_steps: int) -> Tuple[Trajectory, List[int]]:
"""Batches a trajectory of hints samples along the time axis per probe.
Unlike i/o, hints have a variable-length time dimension. Before batching, each
trajectory is padded to the maximum trajectory length.
Args:
traj_hints: A hint trajectory of `DataPoints`s indexed by time then probe
min_steps: Hints will be padded at least to this length - if any hint is
longer than this, the greater length will be used.
Returns:
A |num probes| list of `DataPoint`s with the time axis stacked into `data`,
and a |sample| list containing the length of each trajectory.
"""
max_steps = min_steps
assert traj_hints # non-empty
for sample_hint in traj_hints:
for dp in sample_hint:
assert dp.data.shape[1] == 1 # batching axis
if dp.data.shape[0] > max_steps:
max_steps = dp.data.shape[0]
time_and_batch = (max_steps, len(traj_hints))
# Create zero-filled space for the batched hints, then copy each hint
# up to the corresponding length.
batched_traj = jax.tree_util.tree_map(
lambda x: np.zeros(time_and_batch + x.shape[2:]),
traj_hints[0])
hint_lengths = np.zeros(len(traj_hints))
for sample_idx, cur_sample in enumerate(traj_hints):
for i in range(len(cur_sample)):
assert batched_traj[i].name == cur_sample[i].name
cur_data = cur_sample[i].data
cur_length = cur_data.shape[0]
batched_traj[i].data[:cur_length, sample_idx:sample_idx+1] = cur_data
if i > 0:
assert hint_lengths[sample_idx] == cur_length
else:
hint_lengths[sample_idx] = cur_length
return batched_traj, hint_lengths
def _subsample_data(
trajectory: Trajectory,
idx: List[int],
axis: int = 0,
) -> Trajectory:
"""New `Trajectory` where each `DataPoint`'s data is subsampled along axis."""
sampled_traj = []
for dp in trajectory:
sampled_data = np.take(dp.data, idx, axis=axis)
sampled_traj.append(
probing.DataPoint(dp.name, dp.location, dp.type_, sampled_data))
return sampled_traj
def _preprocess_permutations(probes, enforce_permutations):
"""Replace should-be permutations with proper permutation pointer + mask."""
output = []
for x in probes:
if x.type_ != specs.Type.SHOULD_BE_PERMUTATION:
output.append(x)
continue
assert x.location == specs.Location.NODE
if enforce_permutations:
new_x, mask = probing.predecessor_to_cyclic_predecessor_and_first(x.data)
output.append(
probing.DataPoint(
name=x.name,
location=x.location,
type_=specs.Type.PERMUTATION_POINTER,
data=new_x))
output.append(
probing.DataPoint(
name=x.name + '_mask',
location=x.location,
type_=specs.Type.MASK_ONE,
data=mask))
else:
output.append(probing.DataPoint(name=x.name, location=x.location,
type_=specs.Type.POINTER, data=x.data))
return output
def process_permutations(spec, sample_iterator, enforce_permutations):
"""Replace should-be permutations with proper permutation pointer + mask."""
def _iterate():
while True:
feedback = next(sample_iterator)
features = feedback.features
inputs = _preprocess_permutations(features.inputs, enforce_permutations)
hints = _preprocess_permutations(features.hints, enforce_permutations)
outputs = _preprocess_permutations(feedback.outputs, enforce_permutations)
features = features._replace(inputs=tuple(inputs),
hints=tuple(hints))
feedback = feedback._replace(features=features,
outputs=outputs)
yield feedback
new_spec = {}
for k in spec:
if (spec[k][1] == specs.Location.NODE and
spec[k][2] == specs.Type.SHOULD_BE_PERMUTATION):
if enforce_permutations:
new_spec[k] = (spec[k][0], spec[k][1], specs.Type.PERMUTATION_POINTER)
new_spec[k + '_mask'] = (spec[k][0], spec[k][1], specs.Type.MASK_ONE)
else:
new_spec[k] = (spec[k][0], spec[k][1], specs.Type.POINTER)
else:
new_spec[k] = spec[k]
return new_spec, _iterate()
def process_pred_as_input(spec, sample_iterator):
"""Move pred_h hint to pred input."""
def _iterate():
while True:
feedback = next(sample_iterator)
features = feedback.features
pred_h = [h for h in features.hints if h.name == 'pred_h']
if pred_h:
assert len(pred_h) == 1
pred_h = pred_h[0]
hints = [h for h in features.hints if h.name != 'pred_h']
for i in range(len(features.lengths)):
assert np.sum(np.abs(pred_h.data[1:int(features.lengths[i]), i] -
pred_h.data[0, i])) == 0.0
inputs = tuple(features.inputs) + (
probing.DataPoint(name='pred', location=pred_h.location,
type_=pred_h.type_, data=pred_h.data[0]),)
features = features._replace(inputs=tuple(inputs),
hints=tuple(hints))
feedback = feedback._replace(features=features)
yield feedback
new_spec = {}
for k in spec:
if k == 'pred_h':
assert spec[k] == (specs.Stage.HINT, specs.Location.NODE,
specs.Type.POINTER)
new_spec['pred'] = (specs.Stage.INPUT, specs.Location.NODE,
specs.Type.POINTER)
else:
new_spec[k] = spec[k]
return new_spec, _iterate()
def process_random_pos(sample_iterator, rng):
"""Randomize the `pos` input from a sampler.
The `pos` input is, by default, a scalar uniformly spaced between 0 and 1
across the nodes. The exception are string algorithms (naive_string_matcher,
kmp_string_matcher and lcs_length), where the `pos` sequence is split into
needle and haystack (or first and second string, for lcs_length). Here
we replace the uniformly spaced `pos` with an ordered sequence of random
scalars, or, for string algorithms, two ordered sequences of random scalars.
Args:
sample_iterator: An iterator producing samples with non-random `pos` inputs.
rng: Numpy random generator
Returns:
An iterator returning the samples with randomized `pos` inputs.
"""
def _iterate():
while True:
feedback = next(sample_iterator)
inputs = feedback.features.inputs
pos, = [x for x in inputs if x.name == 'pos']
batch_size, num_nodes = pos.data.shape
unsorted = rng.uniform(size=(batch_size, num_nodes))
new_pos = []
for i in range(batch_size): # we check one example at a time.
# We find if there are splits in the pos sequence, marked by zeros.
# We know there will always be at least 1 zero, if there's no split.
split, = np.where(pos.data[i] == 0)
split = np.concatenate([split, [num_nodes]])
# We construct the randomized pos by sorting the random values in each
# split and concatenating them.
new_pos.append(
np.concatenate([np.sort(unsorted[i, split[j]:split[j+1]])
for j in range(len(split) - 1)]))
pos.data = np.array(new_pos)
inputs = [(pos if x.name == 'pos' else x) for x in inputs]
features = feedback.features._replace(inputs=inputs)
feedback = feedback._replace(features=features)
yield feedback
return _iterate()
|