File size: 5,612 Bytes
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Unit tests for `losses.py`."""

from typing import Generator

from absl.testing import absltest
from absl.testing import parameterized

from clrs._src import dataset
from clrs._src import losses
from clrs._src import probing
from clrs._src import samplers
from clrs._src import specs
import jax
import jax.numpy as jnp
import numpy as np

_Array = np.ndarray
_Location = specs.Location


def _make_sampler(algo: str, nb_nodes: int) -> samplers.Sampler:
  sampler, _ = samplers.build_sampler(
      algo,
      seed=samplers.CLRS30['val']['seed'],
      num_samples=samplers.CLRS30['val']['num_samples'],
      length=nb_nodes,
  )
  return sampler


def _make_iterable_sampler(
    algo: str, batch_size: int,
    nb_nodes: int) -> Generator[samplers.Feedback, None, None]:
  sampler = _make_sampler(algo, nb_nodes)
  while True:
    yield sampler.next(batch_size)


def _as_pred_data(x, nb_nodes, seed, batch_axis):
  """Fake a prediction from a data point."""
  # Permute along batch axis to make the prediction different.
  key = jax.random.PRNGKey(seed)
  data = jax.random.permutation(key, x.data, axis=batch_axis)
  # Extend to one-hot for pointer types.
  if x.type_ == specs.Type.POINTER:
    return jax.nn.one_hot(data, nb_nodes)
  return data


def _mask_datapoint(x, seed, t_axis=None):
  """Add some masking to data."""
  key = jax.random.PRNGKey(seed)
  data = x.data
  if x.type_ == specs.Type.MASK:
    # mask some data at random
    mask_shape = list(data.shape)
    if t_axis is not None:
      mask_shape[t_axis] = 1
    mask = jax.random.uniform(key, tuple(mask_shape)) < 0.2
    data = jnp.where(mask, specs.OutputClass.MASKED, data)
  elif x.type_ in [specs.Type.CATEGORICAL, specs.Type.MASK_ONE]:
    # mask some data at random (all categories together)
    mask_shape = list(data.shape)[:-1]
    if t_axis is not None:
      mask_shape[t_axis] = 1
    mask = jax.random.uniform(key, tuple(mask_shape)) < 0.2
    data = jnp.where(mask[..., None], specs.OutputClass.MASKED, data)
  return probing.DataPoint(name=x.name, location=x.location, type_=x.type_,
                           data=data)


def _rand_diff(seed, shape):
  return 2.0 * jax.random.uniform(jax.random.PRNGKey(seed), shape) - 1.0


def _rand_mask(seed, shape, p=0.5):
  return (jax.random.uniform(jax.random.PRNGKey(seed), shape) > p).astype(float)


def invert(d):
  """Dict of lists -> list of dicts."""
  if d:
    return [dict(zip(d, i)) for i in zip(*d.values())]


def _create_data(algo, nb_nodes):
  batch_size = 8

  ds = _make_iterable_sampler(algo, batch_size, nb_nodes)
  full_sample = next(ds)

  chunk_length = full_sample.features.lengths[0].astype(int)
  chunked_ds = dataset.chunkify(
      _make_iterable_sampler(algo, batch_size, nb_nodes),
      chunk_length)
  chunk_sample = next(chunked_ds)
  return full_sample, chunk_sample


class FullVsChunkLossesTest(parameterized.TestCase):
  """Test that the full and chunked versions of the losses match."""

  # Test two algorithms with fixed-length, covering all data types
  @parameterized.parameters('dfs', 'floyd_warshall')
  def test_output_loss(self, algo):
    nb_nodes = 16
    full_sample, chunk_sample = _create_data(algo, nb_nodes)

    # Calculate output loss.
    for truth_full, truth_chunked in zip(full_sample.outputs,
                                         chunk_sample.outputs):
      chunk_output_loss = losses.output_loss_chunked(
          truth=_mask_datapoint(truth_chunked, seed=0),
          pred=_as_pred_data(truth_chunked, nb_nodes, 0, 1),
          is_last=chunk_sample.features.is_last,
          nb_nodes=nb_nodes,
      )
      full_output_loss = losses.output_loss(
          truth=_mask_datapoint(truth_full, seed=0),
          pred=_as_pred_data(truth_full, nb_nodes, 0, 0),
          nb_nodes=nb_nodes,
      )
      np.testing.assert_allclose(chunk_output_loss, full_output_loss, rtol=1e-4)

  @parameterized.parameters('dfs', 'floyd_warshall')
  def test_hint_loss(self, algo):
    nb_nodes = 16
    full_sample, chunk_sample = _create_data(algo, nb_nodes)
    for truth_full, truth_chunked in zip(full_sample.features.hints,
                                         chunk_sample.features.hints):
      np.testing.assert_array_equal(truth_full.data, truth_chunked.data)
      pred = _as_pred_data(truth_chunked, nb_nodes, 0, 1)
      chunk_hint_loss = losses.hint_loss_chunked(
          truth=_mask_datapoint(truth_chunked, seed=1, t_axis=0),
          pred=pred,
          is_first=chunk_sample.features.is_first,
          nb_nodes=nb_nodes,
      )

      full_preds = pred[1:]
      full_hint_loss = losses.hint_loss(
          truth=_mask_datapoint(truth_full, 1, t_axis=0),
          preds=full_preds,
          lengths=full_sample.features.lengths,
          nb_nodes=nb_nodes,
      )
      np.testing.assert_allclose(chunk_hint_loss, full_hint_loss, rtol=1e-4)


if __name__ == '__main__':
  absltest.main()