Spaces:
Running
Running
File size: 6,665 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for calculating losses."""
from typing import Dict, List, Tuple
import chex
from clrs._src import probing
from clrs._src import specs
import haiku as hk
import jax
import jax.numpy as jnp
_Array = chex.Array
_DataPoint = probing.DataPoint
_Location = specs.Location
_OutputClass = specs.OutputClass
_PredTrajectory = Dict[str, _Array]
_PredTrajectories = List[_PredTrajectory]
_Type = specs.Type
EPS = 1e-12
def _expand_to(x: _Array, y: _Array) -> _Array:
while len(y.shape) > len(x.shape):
x = jnp.expand_dims(x, -1)
return x
def _expand_and_broadcast_to(x: _Array, y: _Array) -> _Array:
return jnp.broadcast_to(_expand_to(x, y), y.shape)
def output_loss_chunked(truth: _DataPoint, pred: _Array,
is_last: _Array, nb_nodes: int) -> float:
"""Output loss for time-chunked training."""
mask = None
if truth.type_ == _Type.SCALAR:
loss = (pred - truth.data)**2
elif truth.type_ == _Type.MASK:
loss = (
jnp.maximum(pred, 0) - pred * truth.data +
jnp.log1p(jnp.exp(-jnp.abs(pred))))
mask = (truth.data != _OutputClass.MASKED)
elif truth.type_ in [_Type.MASK_ONE, _Type.CATEGORICAL]:
mask = jnp.any(truth.data == _OutputClass.POSITIVE, axis=-1)
masked_truth = truth.data * (truth.data != _OutputClass.MASKED).astype(
jnp.float32)
loss = -jnp.sum(masked_truth * jax.nn.log_softmax(pred), axis=-1)
elif truth.type_ == _Type.POINTER:
loss = -jnp.sum(
hk.one_hot(truth.data, nb_nodes) * jax.nn.log_softmax(pred), axis=-1)
elif truth.type_ == _Type.PERMUTATION_POINTER:
# Predictions are NxN logits aiming to represent a doubly stochastic matrix.
# Compute the cross entropy between doubly stochastic pred and truth_data
loss = -jnp.sum(truth.data * pred, axis=-1)
if mask is not None:
mask = mask * _expand_and_broadcast_to(is_last, loss)
else:
mask = _expand_and_broadcast_to(is_last, loss)
total_mask = jnp.maximum(jnp.sum(mask), EPS)
return jnp.sum(jnp.where(mask, loss, 0.0)) / total_mask
def output_loss(truth: _DataPoint, pred: _Array, nb_nodes: int) -> float:
"""Output loss for full-sample training."""
if truth.type_ == _Type.SCALAR:
total_loss = jnp.mean((pred - truth.data)**2)
elif truth.type_ == _Type.MASK:
loss = (
jnp.maximum(pred, 0) - pred * truth.data +
jnp.log1p(jnp.exp(-jnp.abs(pred))))
mask = (truth.data != _OutputClass.MASKED).astype(jnp.float32)
total_loss = jnp.sum(loss * mask) / jnp.sum(mask)
elif truth.type_ in [_Type.MASK_ONE, _Type.CATEGORICAL]:
masked_truth = truth.data * (truth.data != _OutputClass.MASKED).astype(
jnp.float32)
total_loss = (-jnp.sum(masked_truth * jax.nn.log_softmax(pred)) /
jnp.sum(truth.data == _OutputClass.POSITIVE))
elif truth.type_ == _Type.POINTER:
total_loss = (
jnp.mean(-jnp.sum(
hk.one_hot(truth.data, nb_nodes) * jax.nn.log_softmax(pred),
axis=-1)))
elif truth.type_ == _Type.PERMUTATION_POINTER:
# Predictions are NxN logits aiming to represent a doubly stochastic matrix.
# Compute the cross entropy between doubly stochastic pred and truth_data
total_loss = jnp.mean(-jnp.sum(truth.data * pred, axis=-1))
return total_loss
def hint_loss_chunked(
truth: _DataPoint,
pred: _Array,
is_first: _Array,
nb_nodes: int,
):
"""Hint loss for time-chunked training."""
loss, mask = _hint_loss(
truth_data=truth.data,
truth_type=truth.type_,
pred=pred,
nb_nodes=nb_nodes,
)
mask *= (1 - _expand_to(is_first, loss)).astype(jnp.float32)
loss = jnp.sum(loss * mask) / jnp.maximum(jnp.sum(mask), EPS)
return loss
def hint_loss(
truth: _DataPoint,
preds: List[_Array],
lengths: _Array,
nb_nodes: int,
verbose: bool = False,
):
"""Hint loss for full-sample training."""
total_loss = 0.
verbose_loss = {}
length = truth.data.shape[0] - 1
loss, mask = _hint_loss(
truth_data=truth.data[1:],
truth_type=truth.type_,
pred=jnp.stack(preds),
nb_nodes=nb_nodes,
)
mask *= _is_not_done_broadcast(lengths, jnp.arange(length)[:, None], loss)
loss = jnp.sum(loss * mask) / jnp.maximum(jnp.sum(mask), EPS)
if verbose:
verbose_loss['loss_' + truth.name] = loss
else:
total_loss += loss
return verbose_loss if verbose else total_loss
def _hint_loss(
truth_data: _Array,
truth_type: str,
pred: _Array,
nb_nodes: int,
) -> Tuple[_Array, _Array]:
"""Hint loss helper."""
mask = None
if truth_type == _Type.SCALAR:
loss = (pred - truth_data)**2
elif truth_type == _Type.MASK:
loss = (jnp.maximum(pred, 0) - pred * truth_data +
jnp.log1p(jnp.exp(-jnp.abs(pred))))
mask = (truth_data != _OutputClass.MASKED).astype(jnp.float32) # pytype: disable=attribute-error # numpy-scalars
elif truth_type == _Type.MASK_ONE:
loss = -jnp.sum(truth_data * jax.nn.log_softmax(pred), axis=-1,
keepdims=True)
elif truth_type == _Type.CATEGORICAL:
loss = -jnp.sum(truth_data * jax.nn.log_softmax(pred), axis=-1)
mask = jnp.any(truth_data == _OutputClass.POSITIVE, axis=-1).astype(
jnp.float32)
elif truth_type == _Type.POINTER:
loss = -jnp.sum(
hk.one_hot(truth_data, nb_nodes) * jax.nn.log_softmax(pred),
axis=-1)
elif truth_type == _Type.PERMUTATION_POINTER:
# Predictions are NxN logits aiming to represent a doubly stochastic matrix.
# Compute the cross entropy between doubly stochastic pred and truth_data
loss = -jnp.sum(truth_data * pred, axis=-1)
if mask is None:
mask = jnp.ones_like(loss)
return loss, mask
def _is_not_done_broadcast(lengths, i, tensor):
is_not_done = (lengths > i + 1) * 1.0
while len(is_not_done.shape) < len(tensor.shape): # pytype: disable=attribute-error # numpy-scalars
is_not_done = jnp.expand_dims(is_not_done, -1)
return is_not_done
|