File size: 6,665 Bytes
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for calculating losses."""

from typing import Dict, List, Tuple
import chex
from clrs._src import probing
from clrs._src import specs

import haiku as hk
import jax
import jax.numpy as jnp

_Array = chex.Array
_DataPoint = probing.DataPoint
_Location = specs.Location
_OutputClass = specs.OutputClass
_PredTrajectory = Dict[str, _Array]
_PredTrajectories = List[_PredTrajectory]
_Type = specs.Type

EPS = 1e-12


def _expand_to(x: _Array, y: _Array) -> _Array:
  while len(y.shape) > len(x.shape):
    x = jnp.expand_dims(x, -1)
  return x


def _expand_and_broadcast_to(x: _Array, y: _Array) -> _Array:
  return jnp.broadcast_to(_expand_to(x, y), y.shape)


def output_loss_chunked(truth: _DataPoint, pred: _Array,
                        is_last: _Array, nb_nodes: int) -> float:
  """Output loss for time-chunked training."""

  mask = None

  if truth.type_ == _Type.SCALAR:
    loss = (pred - truth.data)**2

  elif truth.type_ == _Type.MASK:
    loss = (
        jnp.maximum(pred, 0) - pred * truth.data +
        jnp.log1p(jnp.exp(-jnp.abs(pred))))
    mask = (truth.data != _OutputClass.MASKED)

  elif truth.type_ in [_Type.MASK_ONE, _Type.CATEGORICAL]:
    mask = jnp.any(truth.data == _OutputClass.POSITIVE, axis=-1)
    masked_truth = truth.data * (truth.data != _OutputClass.MASKED).astype(
        jnp.float32)
    loss = -jnp.sum(masked_truth * jax.nn.log_softmax(pred), axis=-1)

  elif truth.type_ == _Type.POINTER:
    loss = -jnp.sum(
        hk.one_hot(truth.data, nb_nodes) * jax.nn.log_softmax(pred), axis=-1)

  elif truth.type_ == _Type.PERMUTATION_POINTER:
    # Predictions are NxN logits aiming to represent a doubly stochastic matrix.
    # Compute the cross entropy between doubly stochastic pred and truth_data
    loss = -jnp.sum(truth.data * pred, axis=-1)

  if mask is not None:
    mask = mask * _expand_and_broadcast_to(is_last, loss)
  else:
    mask = _expand_and_broadcast_to(is_last, loss)
  total_mask = jnp.maximum(jnp.sum(mask), EPS)
  return jnp.sum(jnp.where(mask, loss, 0.0)) / total_mask


def output_loss(truth: _DataPoint, pred: _Array, nb_nodes: int) -> float:
  """Output loss for full-sample training."""

  if truth.type_ == _Type.SCALAR:
    total_loss = jnp.mean((pred - truth.data)**2)

  elif truth.type_ == _Type.MASK:
    loss = (
        jnp.maximum(pred, 0) - pred * truth.data +
        jnp.log1p(jnp.exp(-jnp.abs(pred))))
    mask = (truth.data != _OutputClass.MASKED).astype(jnp.float32)
    total_loss = jnp.sum(loss * mask) / jnp.sum(mask)

  elif truth.type_ in [_Type.MASK_ONE, _Type.CATEGORICAL]:
    masked_truth = truth.data * (truth.data != _OutputClass.MASKED).astype(
        jnp.float32)
    total_loss = (-jnp.sum(masked_truth * jax.nn.log_softmax(pred)) /
                  jnp.sum(truth.data == _OutputClass.POSITIVE))

  elif truth.type_ == _Type.POINTER:
    total_loss = (
        jnp.mean(-jnp.sum(
            hk.one_hot(truth.data, nb_nodes) * jax.nn.log_softmax(pred),
            axis=-1)))

  elif truth.type_ == _Type.PERMUTATION_POINTER:
    # Predictions are NxN logits aiming to represent a doubly stochastic matrix.
    # Compute the cross entropy between doubly stochastic pred and truth_data
    total_loss = jnp.mean(-jnp.sum(truth.data * pred, axis=-1))

  return total_loss


def hint_loss_chunked(
    truth: _DataPoint,
    pred: _Array,
    is_first: _Array,
    nb_nodes: int,
):
  """Hint loss for time-chunked training."""
  loss, mask = _hint_loss(
      truth_data=truth.data,
      truth_type=truth.type_,
      pred=pred,
      nb_nodes=nb_nodes,
  )

  mask *= (1 - _expand_to(is_first, loss)).astype(jnp.float32)
  loss = jnp.sum(loss * mask) / jnp.maximum(jnp.sum(mask), EPS)
  return loss


def hint_loss(
    truth: _DataPoint,
    preds: List[_Array],
    lengths: _Array,
    nb_nodes: int,
    verbose: bool = False,
):
  """Hint loss for full-sample training."""
  total_loss = 0.
  verbose_loss = {}
  length = truth.data.shape[0] - 1

  loss, mask = _hint_loss(
      truth_data=truth.data[1:],
      truth_type=truth.type_,
      pred=jnp.stack(preds),
      nb_nodes=nb_nodes,
  )
  mask *= _is_not_done_broadcast(lengths, jnp.arange(length)[:, None], loss)
  loss = jnp.sum(loss * mask) / jnp.maximum(jnp.sum(mask), EPS)
  if verbose:
    verbose_loss['loss_' + truth.name] = loss
  else:
    total_loss += loss

  return verbose_loss if verbose else total_loss


def _hint_loss(
    truth_data: _Array,
    truth_type: str,
    pred: _Array,
    nb_nodes: int,
) -> Tuple[_Array, _Array]:
  """Hint loss helper."""
  mask = None
  if truth_type == _Type.SCALAR:
    loss = (pred - truth_data)**2

  elif truth_type == _Type.MASK:
    loss = (jnp.maximum(pred, 0) - pred * truth_data +
            jnp.log1p(jnp.exp(-jnp.abs(pred))))
    mask = (truth_data != _OutputClass.MASKED).astype(jnp.float32)  # pytype: disable=attribute-error  # numpy-scalars

  elif truth_type == _Type.MASK_ONE:
    loss = -jnp.sum(truth_data * jax.nn.log_softmax(pred), axis=-1,
                    keepdims=True)

  elif truth_type == _Type.CATEGORICAL:
    loss = -jnp.sum(truth_data * jax.nn.log_softmax(pred), axis=-1)
    mask = jnp.any(truth_data == _OutputClass.POSITIVE, axis=-1).astype(
        jnp.float32)

  elif truth_type == _Type.POINTER:
    loss = -jnp.sum(
        hk.one_hot(truth_data, nb_nodes) * jax.nn.log_softmax(pred),
        axis=-1)

  elif truth_type == _Type.PERMUTATION_POINTER:
    # Predictions are NxN logits aiming to represent a doubly stochastic matrix.
    # Compute the cross entropy between doubly stochastic pred and truth_data
    loss = -jnp.sum(truth_data * pred, axis=-1)

  if mask is None:
    mask = jnp.ones_like(loss)
  return loss, mask


def _is_not_done_broadcast(lengths, i, tensor):
  is_not_done = (lengths > i + 1) * 1.0
  while len(is_not_done.shape) < len(tensor.shape):  # pytype: disable=attribute-error  # numpy-scalars
    is_not_done = jnp.expand_dims(is_not_done, -1)
  return is_not_done