Spaces:
Running
Running
File size: 6,837 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model base classes and utilities."""
from typing import Dict, List, Tuple
import chex
from clrs._src import probing
from clrs._src import specs
import numpy as np
_Array = chex.Array
Result = Dict[str, probing.DataPoint]
def fuse_perm_and_mask(perm: probing.DataPoint,
mask: probing.DataPoint) -> probing.DataPoint:
"""Replace permutation pointers active in the mask with self-pointers.
Args:
perm: a node permutation_pointer; data shape is expected to be
[..., N, N], and ideally one-hot over the last two dimensions, although
this method does not check for one-hotness.
mask: a mask_one over nodes; data shape is expected to be
[..., N], and ideally one-hot over the last dimension, although
this method does not check for one-hotness.
Returns:
A node pointer with shape [..., N].
"""
assert perm.type_ == specs.Type.PERMUTATION_POINTER
assert perm.location == specs.Location.NODE
assert mask.name == perm.name + '_mask'
assert mask.type_ == specs.Type.MASK_ONE
assert mask.location == specs.Location.NODE
assert perm.data.shape[-1] == perm.data.shape[-2]
assert perm.data.shape[:-1] == mask.data.shape
data = np.where(mask.data > 0.5,
np.arange(perm.data.shape[-1]), # self-pointers
np.argmax(perm.data, axis=-1)) # original pointers
return probing.DataPoint(name=perm.name,
type_=specs.Type.POINTER,
location=perm.location,
data=data)
def _reduce_permutations_tuple(
targets: Tuple[probing.DataPoint, ...]) -> Tuple[probing.DataPoint, ...]:
"""Reduce node pointer + mask_one permutation to just node pointer."""
out_targets = []
n_perms = 0
i = 0
while i < len(targets):
truth = targets[i]
if truth.type_ != specs.Type.PERMUTATION_POINTER:
out_targets.append(truth)
i += 1
continue
truth_mask = targets[i + 1]
out_targets.append(fuse_perm_and_mask(truth, truth_mask))
i += 2
n_perms += 1
assert len(out_targets) == len(targets) - n_perms
return tuple(out_targets)
def _reduce_permutations_dict(predictions: Result) -> Result:
"""Reduce node pointer + mask_one permutation to just node pointer."""
out_preds = {}
n_perms = 0
for k, pred in predictions.items():
if (k.endswith('_mask') and k[:-5] in predictions and
predictions[k[:-5]].type_ == specs.Type.PERMUTATION_POINTER):
# This mask will be processed with its associated permutation datapoint
continue
if pred.type_ != specs.Type.PERMUTATION_POINTER:
out_preds[k] = pred
continue
pred_mask = predictions[k + '_mask']
out_preds[k] = fuse_perm_and_mask(pred, pred_mask)
n_perms += 1
assert len(out_preds) == len(predictions) - n_perms
return out_preds
def evaluate_hints(
hints: Tuple[probing.DataPoint, ...],
lengths: _Array,
hint_preds: List[Result],
) -> Dict[str, _Array]:
"""Evaluate hint predictions."""
evals = {}
hints = _reduce_permutations_tuple(hints)
hint_preds = [_reduce_permutations_dict(h) for h in hint_preds]
for truth in hints:
assert truth.name in hint_preds[0]
eval_along_time = [_evaluate(truth, p[truth.name],
idx=i+1, lengths=lengths)
for (i, p) in enumerate(hint_preds)]
evals[truth.name] = np.sum(
[x * np.sum(i+1 < lengths)
for i, x in enumerate(eval_along_time)]) / np.sum(lengths - 1)
evals[truth.name + '_along_time'] = np.array(eval_along_time)
# Unlike outputs, the hints sometimes include scalars, which don't have
# a meaningful eval score. So we don't compute a global 'hint score' as we
# do for outputs.
return evals
def evaluate(
outputs: Tuple[probing.DataPoint, ...],
predictions: Result,
) -> Dict[str, float]:
"""Evaluate output predictions."""
evals = {}
outputs = _reduce_permutations_tuple(outputs)
predictions = _reduce_permutations_dict(predictions)
for truth in outputs:
assert truth.name in predictions
pred = predictions[truth.name]
evals[truth.name] = _evaluate(truth, pred)
# Return a single scalar score that is the mean of all output scores.
evals['score'] = sum([v.item() for v in evals.values()]) / len(evals)
return evals
def _evaluate(truth, pred, idx=None, lengths=None):
"""Evaluate single prediction of hint or output."""
assert pred.name == truth.name
assert pred.location == truth.location
assert pred.type_ == truth.type_
if truth.type_ not in _EVAL_FN:
raise ValueError('Invalid type')
truth_data = truth.data
pred_data = pred.data
if idx is not None:
if np.all(idx >= lengths):
return 0.
truth_data = truth_data[idx][idx < lengths]
pred_data = pred_data[idx < lengths]
return _EVAL_FN[truth.type_](pred_data, truth_data)
def _eval_one(pred, truth):
mask = np.all(truth != specs.OutputClass.MASKED, axis=-1)
return np.sum(
(np.argmax(pred, -1) == np.argmax(truth, -1)) * mask) / np.sum(mask)
def _mask_fn(pred, truth):
"""Evaluate outputs of type MASK, and account for any class imbalance."""
mask = (truth != specs.OutputClass.MASKED).astype(np.float32)
# Use F1 score for the masked outputs to address any imbalance
tp = np.sum((((pred > 0.5) * (truth > 0.5)) * 1.0) * mask)
fp = np.sum((((pred > 0.5) * (truth < 0.5)) * 1.0) * mask)
fn = np.sum((((pred < 0.5) * (truth > 0.5)) * 1.0) * mask)
# Protect against division by zero
if tp + fp > 0:
precision = tp / (tp + fp)
else:
precision = np.float32(1.0)
if tp + fn > 0:
recall = tp / (tp + fn)
else:
recall = np.float32(1.0)
if precision + recall > 0.0:
f_1 = 2.0 * precision * recall / (precision + recall)
else:
f_1 = np.float32(0.0)
return f_1
_EVAL_FN = {
specs.Type.SCALAR:
lambda pred, truth: np.mean((pred - truth)**2),
specs.Type.MASK: _mask_fn,
specs.Type.MASK_ONE:
_eval_one,
specs.Type.CATEGORICAL:
_eval_one,
specs.Type.POINTER:
lambda pred, truth: np.mean((pred == truth) * 1.0),
}
|