Spaces:
Running
Running
File size: 6,625 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
""" This file contains the code for calling all LLM APIs. """
from pathlib import Path
from .schema import TooLongPromptError, LLMError
from functools import partial
from transformers import AutoTokenizer
import transformers
import torch
import os
import time
# try:
# from huggingface_hub import login
# login(os.environ["HF_TOKEN"])
# except Exception as e:
# print(e)
# print("Could not load hugging face token HF_TOKEN from environ")
try:
import anthropic
# setup anthropic API key
anthropic_client = anthropic.Anthropic(api_key=os.environ['CLAUDE_API_KEY'])
except Exception as e:
print(e)
print("Could not load anthropic API key CLAUDE_API_KEY from environ")
try:
import openai
openai_client = openai.OpenAI()
except Exception as e:
print(e)
print("Could not load OpenAI API key OPENAI_API_KEY from environ")
class LlamaAgent:
def __init__(
self,
model_name,
temperature: float = 0.5,
top_p: float = None,
max_batch_size: int = 1,
max_gen_len = 2000,
):
from huggingface_hub import login
login()
model = f"meta-llama/{model_name}"
self.pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
self.temperature = temperature
self.top_p = top_p
self.max_gen_len = max_gen_len
def complete_text(
self,
prompts: list[str],
max_gen_len=None,
temperature=None,
top_p=None,
num_responses=1,
) -> list[str]:
if max_gen_len is None:
max_gen_len = self.max_gen_len
if temperature is None:
temperature = self.temperature
if top_p is None:
top_p = self.top_p
results = []
for prompt in prompts:
seqs = self.pipeline(
[{"role": "user", "content": prompt}],
do_sample=True,
temperature=temperature,
top_p=top_p,
num_return_sequences=num_responses,
max_new_tokens=max_gen_len,
)
seqs = [s["generated_text"][-1]["content"] for s in seqs]
results += seqs
return results
agent_cache = {}
def complete_text_openai(prompt, stop_sequences=[], model="gpt-3.5-turbo", max_tokens_to_sample=2000, temperature=0.2):
""" Call the OpenAI API to complete a prompt."""
raw_request = {
"model": model,
"temperature": temperature,
"max_tokens": max_tokens_to_sample,
"stop": stop_sequences or None, # API doesn't like empty list
}
messages = [{"role": "user", "content": prompt}]
response = openai_client.chat.completions.create(messages=messages, **raw_request)
completion = response.choices[0].message.content
return completion
def complete_text_claude(prompt, stop_sequences=[anthropic.HUMAN_PROMPT], model="claude-v1", max_tokens_to_sample=2000, temperature=0.5):
""" Call the Claude API to complete a prompt."""
ai_prompt = anthropic.AI_PROMPT
try:
while True:
try:
message = anthropic_client.messages.create(
messages=[
{
"role": "user",
"content": prompt,
}
],
model=model,
stop_sequences=stop_sequences,
temperature=temperature,
max_tokens=max_tokens_to_sample,
)
except anthropic.RateLimitError:
time.sleep(0.1)
continue
except anthropic.InternalServerError as e:
pass
try:
completion = message.content[0].text
break
except:
print("end_turn???")
pass
except anthropic.APIStatusError as e:
print(e)
raise TooLongPromptError()
except Exception as e:
raise LLMError(e)
return completion
def complete_multi_text(
prompts: str, model: str,
max_tokens_to_sample=None,
temperature=0.5,
top_p=None,
responses_per_request=1,
) -> list[str]:
""" Complete text using the specified model with appropriate API. """
if model.startswith("claude"):
completions = []
for prompt in prompts:
for _ in range(responses_per_request):
completion = complete_text_claude(
prompt,
stop_sequences=[anthropic.HUMAN_PROMPT, "Observation:"],
temperature=temperature,
model=model,
)
completions.append(completion)
return completions
elif model.startswith("gpt"):
completions = []
for prompt in prompts:
for _ in range(responses_per_request):
completion = complete_text_openai(
prompt,
stop_sequences=[anthropic.HUMAN_PROMPT, "Observation:"],
temperature=temperature,
model=model,
)
completions.append(completion)
return completions
else: #llama
if model not in agent_cache:
agent_cache[model] = LlamaAgent(model_name=model)
completions = []
try:
completions = agent_cache[model].complete_text(
prompts=prompts,
num_responses=responses_per_request,
max_gen_len=max_tokens_to_sample,
temperature=temperature,
top_p=top_p
)
for _ in range(responses_per_request):
completions += agent_cache[model].complete_text(
prompts=prompts,
)
except Exception as e:
raise LLMError(e)
return completions
def complete_text(
prompt: str, model: str,
max_tokens_to_sample=2000,
temperature=0.5,
top_p=None,
) -> str:
completion = complete_multi_text(
prompts=[prompt],
model=model,
max_tokens_to_sample=max_tokens_to_sample,
temperature=temperature,
top_p=top_p,
)[0]
return completion
# specify fast models for summarization etc
FAST_MODEL = "claude-3-haiku"
def complete_text_fast(prompt, *args, **kwargs):
return complete_text(prompt, model=FAST_MODEL, *args, **kwargs)
|