Spaces:
Running
Running
File size: 33,129 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import random
import gradio as gr
from pathlib import Path
from reactagent.environment import Environment
from reactagent.agents.agent_research import ResearchAgent
from reactagent.runner import create_parser
from reactagent import llm
from reactagent.users.user import User
# Global variables to store session state
env = None
agent = None
# Predefined research paper text (example)
predefined_paper_text = """
Title:
Dataset and Baseline for Automatic Student Feedback Analysis
Abstract:
This paper presents a student feedback corpus containing 3000 instances of feedback written by university students. The dataset has been annotated for aspect terms, opinion terms, polarities of the opinion terms towards targeted aspects, document-level opinion polarities, and sentence separations. A hierarchical taxonomy for aspect categorization covering all areas of the teaching-learning process was developed. Both implicit and explicit aspects were annotated using this taxonomy. The paper discusses the annotation methodology, difficulties faced during the annotation, and details about aspect term categorization. The annotated corpus can be used for Aspect Extraction, Aspect Level Sentiment Analysis, and Document Level Sentiment Analysis. Baseline results for all three tasks are provided.
"""
# Predefined extracted elements based on the paper text
predefined_research_tasks = "The primary research tasks include the creation of a comprehensive student feedback corpus, aspect term annotation, opinion polarity annotation, and the development of a hierarchical taxonomy."
predefined_research_gaps = "Gaps include the lack of detailed aspect-level annotations in existing datasets and the focus on document-level sentiment analysis."
predefined_keywords = "Student Feedback Corpus, Aspect Terms, Opinion Terms, Polarity, Hierarchical Taxonomy, Aspect Extraction, Aspect Level Sentiment Analysis, Document Level Sentiment Analysis"
predefined_recent_works = """
1. "Students feedback analysis model using deep learning-based method and linguistic knowledge for intelligent educational systems."
2. "An Automated Approach for Analysing Students Feedback Using Sentiment Analysis Techniques."
"""
# Extraction function to simulate the extraction of Research Tasks (t), Research Gaps (g), Keywords (k), and Recent Works (R)
def extract_research_elements(paper_text):
# Returning the predefined extracted content
return predefined_research_tasks, predefined_research_gaps, predefined_keywords, predefined_recent_works
# Generation function for Research Hypothesis and Experiment Plan
def generate_research_idea_and_plan(tasks, gaps, keywords, recent_works):
hypothesis = f"""
Method: Advanced Aspect-Level Sentiment Analysis of Student Feedback Using a Hybrid Deep Learning Approach
Step 1: Dataset Enhancement
Data Collection and Preprocessing
* Collect additional student feedback from multiple universities to expand the existing dataset.
* Preprocess the data to ensure uniformity in annotation and eliminate noise, such as redundant information and grammatical errors.
Annotation Refinement
* Use advanced NLP techniques to further refine the aspect terms, opinion terms, and polarities.
* Incorporate semi-supervised learning methods to improve annotation accuracy, utilizing both manual and automated processes.
Step 2: Model Development
Hybrid Model Architecture
* Develop a hybrid model that integrates CNN, BiLSTM, and attention mechanisms, similar to the DTLP approach mentioned in the recent work by DTLP (Deep Learning and Teaching Process).
* Incorporate a Transformer-based model (like BERT) to capture contextual nuances and improve the understanding of implicit aspects.
Feature Integration
* Enhance the feature set by combining statistical, linguistic, and sentiment knowledge features with word embeddings.
* Include sentiment shifter rules and contextual polarity indicators to address challenges in sentiment analysis.
Step 3: Training and Validation
Model Training
* Train the hybrid model using the enhanced dataset.
* Use cross-validation techniques to ensure robustness and prevent overfitting.
Baseline Comparisons
* Compare the model's performance with baseline results provided in the original study and other recent works.
* Use metrics such as accuracy, precision, recall, and F1-score to evaluate model performance across different tasks, including Aspect Extraction, Aspect Level Sentiment Analysis, and Document Level Sentiment Analysis.
Step 4: Iterative Refinement
Feedback Loop
* Implement an iterative feedback loop where the model's predictions are reviewed and corrected, improving the model iteratively.
* Engage domain experts in the review process to ensure the relevance and accuracy of the feedback. Continuous Learning
* Utilize active learning techniques to continuously update the model with new data, ensuring it remains up-to-date with current trends in student feedback.
Step 5: Deployment and Application
Integration with Educational Systems
* Deploy the model as a part of an intelligent educational system to analyze student feedback in real-time.
* Provide actionable insights to educators and administrators to improve teaching methods and curriculum design. User Interface Development
* Develop an intuitive user interface that allows educators to interact with the model, view feedback analysis, and generate reports.
"""
experiment_plan = f"""
Experiment: Validating the Hybrid Deep Learning Approach for Aspect-Level Sentiment Analysis of Student Feedback
Objective:
To validate the effectiveness of the proposed hybrid deep learning approach (combining CNN, BiLSTM, and Transformer models) for aspect-level sentiment analysis of student feedback by comparing its performance with baseline methods and recent works.
Research Problem:
Current sentiment analysis models for student feedback lack detailed aspect-level annotations and fail to address implicit aspects and contextual nuances in feedback data.
Proposed Method:
A hybrid deep learning model integrating CNN, BiLSTM, and Transformer-based models (like BERT) to enhance aspect-level sentiment analysis. The method incorporates sentiment shifter rules and contextual polarity indicators to address challenges in sentiment analysis.
Experiment Design:
1. Dataset Preparation:
* Existing Dataset: Use the dataset provided by Herath et al. (2022) with 3000 instances of student feedback, annotated for aspect terms, opinion terms, polarities, and document-level sentiments.
* Data Augmentation: Expand the dataset by collecting additional feedback from multiple universities, ensuring diversity in feedback data.
2. Preprocessing:
* Clean the data to remove noise and inconsistencies.
* Tokenize the text and apply part-of-speech tagging.
* Annotate additional feedback instances using the refined hierarchical taxonomy.
3. Model Training:
* Baseline Models: Implement and train traditional machine learning models (e.g., SVM, Naive Bayes) and existing deep learning models (e.g., LSTM, BiLSTM) for sentiment analysis.
* Proposed Hybrid Model: Train the proposed hybrid model combining CNN, BiLSTM, and Transformer (BERT) layers. Use pre-trained embeddings and fine-tune on the feedback dataset.
4. Feature Extraction:
* Extract features using word embeddings, sentiment shifter rules, and contextual polarity indicators.
* Integrate statistical, linguistic, and sentiment knowledge features with word embeddings to form a comprehensive feature set.
5. Evaluation Metrics:
* Measure the performance of models using accuracy, precision, recall, and F1-score.
* Perform aspect-level evaluation by analyzing the accuracy of aspect term extraction and sentiment classification.
6. Experiment Execution:
* Training Phase: Train the baseline models and the proposed hybrid model on the training dataset.
* Validation Phase: Validate the models using cross-validation techniques to ensure robustness and prevent overfitting.
* Testing Phase: Evaluate the models on a held-out test set to compare their performance.
7. Comparison and Analysis:
* Compare the performance of the proposed hybrid model with baseline models and recent works, such as DTLP and other sentiment analysis techniques.
* Analyze the results to identify strengths and weaknesses of the proposed model in handling aspect-level sentiment analysis and implicit aspects.
8. Iterative Refinement:
* Implement an iterative feedback loop where predictions are reviewed and corrected, improving model performance over iterations.
* Engage domain experts to review the model's predictions and provide feedback for further refinement.
9. Deployment:
* Integrate the validated model into an intelligent educational system for real-time feedback analysis.
* Develop a user interface to allow educators to interact with the model, view feedback analysis, and generate reports.
"""
return hypothesis, experiment_plan
predefined_action_log = """
[Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
[Action]: Inspect Script (train.py)
Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
Objective: Understand the training script, including data processing, [...]
[Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
[Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.
"""
predefined_response = """
[Reasoning]: Execute the "final_model.py" using ExecuteScript action to evaluate performance of the final model.
[Action]: Execute "final_model.py" using ExecuteScript action.
Input: {"script_name": "final_model.py"}
"""
predefined_observation = """
Epoch [1/10],
Train MSE: 0.543,
Test MSE: 0.688
Epoch [2/10],
Train MSE: 0.242,
Test MSE: 0.493
"""
# # Structured input as list of dictionaries
# process_steps = [
# "Action: Inspect Script Lines (train.py)\nObservation: The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). Sets random seeds for reproducibility. Defines compute_metrics_for_regression function to calculate RMSE for different dimensions. Placeholder functions train_model and predict exist without implementations.\nFeedback: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.",
# "Action: Execute Script (train.py)\nObservation: The script executed successfully. Generated embeddings using the BERT model. Completed the training process without errors. Metrics calculation placeholders indicated areas needing implementation.\nFeedback: Experimental model definition and training logic are missing.",
# "Action: Edit Script (train.py)\nObservation: Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. The edited train.py now has clearly defined functions for data loading (load_data), model definition (build_model), training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently.\nFeedback: Modify model architecture, retrieve the hybrid model of CNN, BiLSTM, and attention mechanisms, similar to the DTLP to align with the experiment design.",
# "Action: Retrieve Model\nObservation: CNN and BiLSTM retrieved.\nFeedback: Modify the model architecture.",
# "Action: Execute Script (train.py)\nObservation: The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, the decrease in loss indicates improved model performance.\nFeedback: Continue with the next steps in model evaluation.",
# predefined_observation
# ]
action_list = [
predefined_response,
predefined_observation
]
# Predefined code to display in Phase 2
predefined_code = """import pandas as pd
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import numpy as np
import random
import torch
from sklearn.model_selection import train_test_split
DIMENSIONS = ["cohesion", "syntax", "vocabulary", "phraseology", "grammar", "conventions"]
SEED = 42
random.seed(SEED)
torch.manual_seed(SEED)
np.random.seed(SEED)
def compute_metrics_for_regression(y_test, y_test_pred):
metrics = {}
for task in DIMENSIONS:
targets_task = [t[DIMENSIONS.index(task)] for t in y_test]
pred_task = [l[DIMENSIONS.index(task)] for l in y_test_pred]
rmse = mean_squared_error(targets_task, pred_task, squared=False)
metrics[f"rmse_{task}"] = rmse
return metrics
def train_model(X_train, y_train, X_valid, y_valid):
model = None # Placeholder for model training
return model
def predict(model, X):
y_pred = np.random.rand(len(X), len(DIMENSIONS))
return y_pred
if __name__ == '__main__':
ellipse_df = pd.read_csv('train.csv',
header=0, names=['text_id', 'full_text', 'Cohesion', 'Syntax',
'Vocabulary', 'Phraseology','Grammar', 'Conventions'],
index_col='text_id')
ellipse_df = ellipse_df.dropna(axis=0)
data_df = ellipse_df
X = list(data_df.full_text.to_numpy())
y = np.array([data_df.drop(['full_text'], axis=1).iloc[i] for i in range(len(X))])
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.10, random_state=SEED)
model = train_model(X_train, y_train, X_valid, y_valid)
y_valid_pred = predict(model, X_valid)
metrics = compute_metrics_for_regression(y_valid, y_valid_pred)
print(metrics)
print("final MCRMSE on validation set: ", np.mean(list(metrics.values())))
submission_df = pd.read_csv('test.csv', header=0, names=['text_id', 'full_text'], index_col='text_id')
X_submission = list(submission_df.full_text.to_numpy())
y_submission = predict(model, X_submission)
submission_df = pd.DataFrame(y_submission, columns=DIMENSIONS)
submission_df.index = submission_df.index.rename('text_id')
submission_df.to_csv('submission.csv')
"""
final_code = """
* Resulting train.py:
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from transformers import BertTokenizer, BertModel
# Define constants
DIMENSIONS = ['cohesion', 'syntax', 'vocabulary', 'phraseology', 'grammar', 'conventions']
class EssayDataset(Dataset):
def __init__(self, texts, targets, tokenizer, max_len):
self.texts = texts
self.targets = targets
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, item):
text = self.texts[item]
target = self.targets[item]
encoding = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_len,
return_token_type_ids=False,
padding='max_length',
return_attention_mask=True,
return_tensors='pt',
truncation=True
)
return {
'text': text,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'targets': torch.tensor(target, dtype=torch.float)
}
class EssayScoreRegressor(nn.Module):
def __init__(self, n_outputs):
super(EssayScoreRegressor, self).__init__()
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.drop = nn.Dropout(p=0.3)
self.out = nn.Linear(self.bert.config.hidden_size, n_outputs)
def forward(self, input_ids, attention_mask):
pooled_output = self.bert(
input_ids=input_ids,
attention_mask=attention_mask
)['pooler_output']
output = self.drop(pooled_output)
return self.out(output)
def train_epoch(model, data_loader, loss_fn, optimizer, device, scheduler, n_examples):
model = model.train()
losses = []
for d in data_loader:
input_ids = d['input_ids'].to(device)
attention_mask = d['attention_mask'].to(device)
targets = d['targets'].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
loss = loss_fn(outputs, targets)
losses.append(loss.item())
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
return np.mean(losses)
def train_model(train_data, val_data, tokenizer, model, optimizer, scheduler, device, epochs, batch_size, max_len):
train_dataset = EssayDataset(
texts=train_data['full_text'].to_numpy(),
targets=train_data[DIMENSIONS].to_numpy(),
tokenizer=tokenizer,
max_len=max_len
)
val_dataset = EssayDataset(
texts=val_data['full_text'].to_numpy(),
targets=val_data[DIMENSIONS].to_numpy(),
tokenizer=tokenizer,
max_len=max_len
)
train_data_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True
)
val_data_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False
)
loss_fn = nn.MSELoss().to(device)
for epoch in range(epochs):
print(f'Epoch {epoch + 1}/{epochs}')
print('-' * 10)
train_loss = train_epoch(
model,
train_data_loader,
loss_fn,
optimizer,
device,
scheduler,
len(train_dataset)
)
print(f'Train loss {train_loss}')
if __name__ == "__main__":
df = pd.read_csv('train.csv')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = EssayScoreRegressor(n_outputs=len(DIMENSIONS))
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=2e-5)
total_steps = len(df) // 16 * 5
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=total_steps, gamma=0.1)
train_data = df.sample(frac=0.8, random_state=42)
val_data = df.drop(train_data.index)
train_model(train_data, val_data, tokenizer, model, optimizer, scheduler, device, epochs=5, batch_size=16, max_len=160)
* eval.py
import sys
import os
import pandas as pd
import numpy as np
import torch
from torch.utils.data import DataLoader
from transformers import BertTokenizer
from importlib import reload
import train
# Constants
DIMENSIONS = train.DIMENSIONS
class EssayDataset(Dataset):
def __init__(self, texts, targets, tokenizer, max_len):
self.texts = texts
self.targets = targets
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, item):
text = self.texts[item]
target = self.targets[item]
encoding = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_len,
return_token_type_ids=False,
padding='max_length',
return_attention_mask=True,
return_tensors='pt',
truncation=True
)
return {
'text': text,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'targets': torch.tensor(target, dtype=torch.float)
}
def get_score(submission_folder="../env"):
submission_path = os.path.join(submission_folder, "submission.csv")
solution = pd.read_csv(os.path.join(os.path.dirname(__file__), "answer.csv"))[DIMENSIONS].to_numpy()
submission = pd.read_csv(submission_path)[DIMENSIONS].to_numpy()
metrics = train.compute_metrics_for_regression(solution, submission)
return np.mean(list(metrics.values()))
def eval_model(model, data_loader, device, n_examples):
model = model.eval()
predictions = []
with torch.no_grad():
for d in data_loader:
input_ids = d['input_ids'].to(device)
attention_mask = d['attention_mask'].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
predictions.extend(outputs.cpu().numpy())
return predictions
if __name__ == "__main__":
reload(train)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = train.EssayScoreRegressor(n_outputs=len(DIMENSIONS))
model.load_state_dict(torch.load('model.bin'))
model = model.to(device)
test_data = pd.read_csv('test.csv')
test_dataset = EssayDataset(
texts=test_data['full_text'].to_numpy(),
targets=np.zeros((len(test_data), len(DIMENSIONS))), # Dummy targets
tokenizer=tokenizer,
max_len=160
)
test_data_loader = DataLoader(
test_dataset,
batch_size=16,
shuffle=False
)
predictions = eval_model(
model,
test_data_loader,
device,
len(test_dataset)
)
submission = pd.DataFrame(predictions, columns=DIMENSIONS)
submission['text_id'] = test_data['text_id']
submission.to_csv(os.path.join("../env", 'submission.csv'), index=False)
print(get_score())
"""
class SessionInfo:
def __init__(self):
self.coro_cache = {}
self.parser = create_parser()
def make_session(self, prompt, session_hash):
id = session_hash
llm_name='claude-3-5-sonnet-20240620'
fastllm_name='claude-3-haiku-20240307'
rawargs = [
'--research-problem', prompt,
'--log-dir', str(Path('logs', id)),
'--work-dir', str(Path('workspaces', id)),
'--llm-name', llm_name,
'--edit-script-llm-name', llm_name,
'--fast-llm-name', fastllm_name,
]
args = self.parser.parse_args(rawargs)
# llm.FAST_MODEL = args.fast_llm_name
env = Environment(args)
# agent = ResearchAgent(args, env)
coro = agent.run(env)
self.coro_cache[id] = coro
return id
def get_response(self, human_input, session_hash):
coro_input = human_input
if session_hash not in self.coro_cache:
self.make_session(human_input, session_hash)
coro_input = None
try:
output = self.coro_cache[session_hash].send(coro_input)
except StopIteration:
output = None
del self.coro_cache[session_hash]
return output
session_info = SessionInfo()
def info_to_message(info):
msg = ""
for k, v in info.items():
if isinstance(v, dict):
tempv = v
v = ""
for k2, v2 in tempv.items():
v += f"{k2}:\n {v2}\n"
v = User.indent_text(v, 2)
msg += '-' * 64
msg += '\n'
msg += f"{k}:\n{v}\n"
msg += "Please provide feedback based on the history, response entries, and observation, and questions: "
return msg
def predict(message, history, request: gr.Request):
response = session_info.get_response(message, request.session_hash)
if response is None:
return "Agent is finished. Enter a new instruction."
return info_to_message(response)
# Initialize the global step_index and history
process_steps = [
{
"Action": "Inspect Script Lines (train.py)",
"Observation": (
"The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
"Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
"to calculate RMSE for different dimensions. Placeholder functions train_model and "
"predict exist without implementations."
),
},
{
"Action": "Execute Script (train.py)",
"Observation": (
"The script executed successfully. Generated embeddings using the BERT model. Completed "
"the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
),
},
{
"Action": "Edit Script (train.py)",
"Observation": (
"Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
"The edited train.py now has clearly defined functions"
"for data loading (load_data), model definition (build_model), "
"training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
),
},
{
"Action": "Retrieve Model",
"Observation": "CNN and BiLSTM retrieved.",
},
{
"Action": "Execute Script (train.py)",
"Observation": (
"The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
"the decrease in loss indicates improved model performance."
)
},
{
"Action": "Evaluation",
"Observation": predefined_observation,
}
]
# step_index = 0
# def info_to_message(info):
# msg = "Agent Response:\n"
# for k, v in info.items():
# if isinstance(v, dict):
# tempv = v
# v = ""
# for k2, v2 in tempv.items():
# v += f"{k2}:\n {v2}\n"
# v = User.indent_text(v, 2)
# msg += '-' * 64
# msg += '\n'
# msg += f"{k}:\n{v}\n"
# msg += "Please provide feedback based on the history, response entries, and observation, and questions: "
# print(msg)
# return msg
# def predict(message, history):
# global step_index # Declare the use of global variable
# if step_index < len(process_steps):
# response_info = process_steps[step_index]
# response = info_to_message(response_info) # Convert dictionary to formatted string
# step_index += 1
# else:
# response = "Agent Finished."
# return response, "N/A" # Return the formatted string and clear input
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# AI Research Assistant with Research Agent")
# Use state variables to store generated hypothesis and experiment plan
hypothesis_state = gr.State("")
experiment_plan_state = gr.State("")
# Phase 1: Research Idea Generation Tab
with gr.Tab("Phase 1: Research Idea Generation"):
gr.Markdown("### Extract Research Elements and Generate Research Ideas")
with gr.Row():
with gr.Column():
paper_text_input = gr.Textbox(value=predefined_paper_text, lines=10, label="Research Paper Text")
extract_button = gr.Button("Extract Research Elements")
with gr.Row():
tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=False)
gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=False)
keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=False)
recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=False)
with gr.Column():
with gr.Row(): # Move the button to the top right
generate_button = gr.Button("Generate Research Hypothesis & Experiment Plan")
with gr.Group():
gr.Markdown("### Research Idea")
with gr.Row():
hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=45, interactive=False)
experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=45, interactive=False)
# Step 1: Extract Research Elements
extract_button.click(
fn=extract_research_elements,
inputs=paper_text_input,
outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
)
# Step 2: Generate Research Hypothesis and Experiment Plan
def generate_and_store(tasks, gaps, keywords, recent_works):
hypothesis, experiment_plan = generate_research_idea_and_plan(tasks, gaps, keywords, recent_works)
return hypothesis, experiment_plan, hypothesis, experiment_plan
generate_button.click(
fn=generate_and_store,
inputs=[tasks_output, gaps_output, keywords_output, recent_works_output],
outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
)
# Phase 2: Interactive Session Tab
with gr.Tab("Phase 2&3: Experiment implementation and execution"):
gr.Markdown("### Interact with the ExperimentAgent")
with gr.Row():
with gr.Column():
idea_input = gr.Textbox(label="Research Hypothesis", lines=30, interactive=False)
plan_input = gr.Textbox(label="Experiment Plan", lines=30, interactive=False)
with gr.Column():
execute_button = gr.Button("Start ExperimentAgent", elem_classes=["execute-btn"])
with gr.Group():
gr.Markdown("### Implementation + Execution Log")
log = gr.Textbox(label="Execution Log", lines=20, interactive=False)
code_display = gr.Code(label="Implementation", language="python", interactive=False)
with gr.Column():
# chatbot = gr.ChatInterface(predict)
response = gr.Textbox(label = "ExperimentAgent Response", lines=30, interactive=False)
feedback = gr.Textbox(placeholder="N/A", label = "User Feedback", lines=3, interactive=True)
submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
def submit_feedback(user_feedback, history, previous_response):
global step_index
if_end = False
step_index += 1
msg = history
if step_index < len(process_steps):
msg += previous_response + "\nUser feedback:" + user_feedback +"\n\n"
response_info = process_steps[step_index]
response = info_to_message(response_info) # Convert dictionary to formatted string
step_index += 1
else:
if_end = True
response = "Agent Finished."
msg += response
return msg, response, predefined_code if if_end else final_code
# def predict(message, history):
# global step_index # Declare the use of global variable
# if step_index < len(process_steps):
# response_info = process_steps[step_index]
# response = info_to_message(response_info) # Convert dictionary to formatted string
# step_index += 1
# else:
# response = "Agent Finished."
# Automatically populate the hypothesis and plan in Phase 2
def load_phase_2_inputs(hypothesis, plan):
return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
# Function to implement and execute with the research agent
def implement_and_execute(hypothesis, plan):
predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
return predefined_code, predefined_action_log
hypothesis_state.change(
fn=load_phase_2_inputs,
inputs=[hypothesis_state, experiment_plan_state],
outputs=[idea_input, plan_input, code_display]
)
# Trigger the research agent execution with the predefined hypothesis and plan
execute_button.click(
fn=implement_and_execute,
inputs=[hypothesis_state, experiment_plan_state],
outputs=[code_display, log]
)
submit_button.click(
fn=submit_feedback,
inputs=[feedback, log, response],
outputs=[log, response, code_display]
)
if __name__ == "__main__":
# app.launch(share=True)
step_index = 0
app.launch()
|