File size: 12,696 Bytes
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CLRS dataset."""

import dataclasses

import functools
from typing import Iterator

from clrs._src import probing
from clrs._src import samplers
from clrs._src import specs

import jax
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds


def _correct_axis_filtering(tensor, index, name):
  if 'hint_' in name:
    return tensor[:, index]
  else:
    return tensor[index]


@dataclasses.dataclass
class CLRSConfig(tfds.core.BuilderConfig):
  """Specify the split in the variant because they have different shapes."""
  split: str = ''


DEFAULT_BUILDER_CONFIGS = []


def _build_default_builder_configs():
  for split in ['train', 'val', 'test']:
    for alg in specs.CLRS_30_ALGS:
      DEFAULT_BUILDER_CONFIGS.append(
          CLRSConfig(name=f'{alg}_{split}', split=split))


_build_default_builder_configs()


class CLRSDataset(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for my_dataset dataset."""

  VERSION = tfds.core.Version('1.0.0')
  RELEASE_NOTES = {
      '1.0.0': 'Initial release.',
  }
  BUILDER_CONFIGS = DEFAULT_BUILDER_CONFIGS

  _instantiated_dataset = None
  _instantiated_dataset_name = ''
  _instantiated_dataset_split = ''

  def _num_samples(self, algorithm_name):
    num_samples = samplers.CLRS30[self._builder_config.split]['num_samples']  # pytype: disable=attribute-error  # always-use-return-annotations
    if self._builder_config.split != 'train':  # pytype: disable=attribute-error  # always-use-return-annotations
      # Generate more samples for those algorithms in which the number of
      # signals is small.
      num_samples *= specs.CLRS_30_ALGS_SETTINGS[algorithm_name][
          'num_samples_multiplier']
    return num_samples

  def _create_data(self, single_sample):
    algorithm_name = '_'.join(self._builder_config.name.split('_')[:-1])
    num_samples = self._num_samples(algorithm_name)
    sampler, _ = samplers.build_sampler(
        algorithm_name,
        seed=samplers.CLRS30[self._builder_config.split]['seed'],  # pytype: disable=attribute-error  # always-use-return-annotations
        num_samples=num_samples,
        length=samplers.CLRS30[self._builder_config.split]['length'],  # pytype: disable=attribute-error  # always-use-return-annotations
    )
    sampled_dataset = sampler.next(batch_size=1 if single_sample else None)
    data = {'input_' + t.name: t.data for t in sampled_dataset.features.inputs}
    # All other data points have input_, hint_, and output_ prefixes, so we
    # guarantee that this key is unused.
    data['lengths'] = sampled_dataset.features.lengths
    data.update({'output_' + t.name: t.data for t in sampled_dataset.outputs})
    data.update({
        'hint_' + t.name: t.data for t in sampled_dataset.features.hints})
    self._instantiated_dataset = data

  def _info(self) -> tfds.core.DatasetInfo:
    if tf.io.gfile.exists(self.data_dir):
      info = tfds.core.DatasetInfo(builder=self)
      info.read_from_directory(self.data_dir)
      return info

    if (self._instantiated_dataset_name != self._builder_config.name
        or self._instantiated_dataset_split != self._builder_config.split):  # pytype: disable=attribute-error  # always-use-return-annotations
      self._create_data(single_sample=True)

    data = {k: _correct_axis_filtering(v, 0, k)
            for k, v in self._instantiated_dataset.items()}
    data_info = {
        k: tfds.features.Tensor(shape=v.shape, dtype=tf.dtypes.as_dtype(
            v.dtype)) for k, v in data.items()}
    return tfds.core.DatasetInfo(
        builder=self,
        features=tfds.features.FeaturesDict(data_info),
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Download the data and define splits."""
    if (self._instantiated_dataset_name != self._builder_config.name
        or self._instantiated_dataset_split != self._builder_config.split):  # pytype: disable=attribute-error  # always-use-return-annotations
      self._create_data(single_sample=False)
      self._instantiated_dataset_name = self._builder_config.name
      self._instantiated_dataset_split = self._builder_config.split  # pytype: disable=attribute-error  # always-use-return-annotations
    return {self._builder_config.split: self._generate_examples()}  # pytype: disable=attribute-error  # always-use-return-annotations

  def _generate_examples(self):
    """Generator of examples for each split."""
    algorithm_name = '_'.join(self._builder_config.name.split('_')[:-1])
    for i in range(self._num_samples(algorithm_name)):
      data = {k: _correct_axis_filtering(v, i, k)
              for k, v in self._instantiated_dataset.items()}
      yield str(i), data


def _get_clrs_file_name():
  return f'CLRS30_v{CLRSDataset.VERSION}.tar.gz'


def get_dataset_gcp_url():
  return f'https://storage.googleapis.com/dm-clrs/{_get_clrs_file_name()}'


def get_clrs_folder():
  return f'CLRS30_v{CLRSDataset.VERSION}'


def _preprocess(data_point, algorithm=None):
  """Convert sampled inputs into DataPoints."""
  inputs = []
  outputs = []
  hints = []
  lengths = None

  for name, data in data_point.items():
    if name == 'lengths':
      lengths = data
      continue
    data_point_name = name.split('_')
    name = '_'.join(data_point_name[1:])
    (stage, location, dp_type) = specs.SPECS[algorithm][name]
    assert stage == data_point_name[0]
    if stage == specs.Stage.HINT:
      data = tf.experimental.numpy.swapaxes(data, 0, 1)
    dp = probing.DataPoint(name, location, dp_type, data)
    if stage == specs.Stage.INPUT:
      inputs.append(dp)
    elif stage == specs.Stage.OUTPUT:
      outputs.append(dp)
    else:
      hints.append(dp)
  return samplers.Feedback(
      samplers.Features(tuple(inputs), tuple(hints), lengths), tuple(outputs))


def create_dataset(folder, algorithm, split, batch_size):
  dataset = tfds.load(f'clrs_dataset/{algorithm}_{split}',
                      data_dir=folder, split=split)
  num_samples = len(dataset)  # Must be done here for correct size
  dataset = dataset.repeat()
  dataset = dataset.batch(batch_size)
  return (dataset.map(lambda d: _preprocess(d, algorithm=algorithm)),
          num_samples,
          specs.SPECS[algorithm])


def _copy_hint(source, dest, i, start_source, start_dest, to_add):
  """Copy from full-sample hint to a hint chunk."""
  assert np.all(dest[start_dest:, i:] == 0)
  assert start_dest < dest.shape[0]
  assert start_dest + to_add <= dest.shape[0]
  assert start_source < source.shape[0]
  assert start_source + to_add <= source.shape[0]
  dest[start_dest:start_dest+to_add, i] = source[
      start_source:start_source+to_add, i]
  return dest


def _copy_io(source, dest, i, start_dest, to_add):
  """Copy from an input or output to an input or output chunk."""
  assert np.all(dest[start_dest:, i:] == 0)
  dest[start_dest:start_dest+to_add, i] = source[i]
  return dest


def chunkify(dataset: Iterator[samplers.Feedback], chunk_length: int):
  """Generator of fixed-length chunks from full-trajectory samples.

  Args:
    dataset: full-sample dataset as numpy iterator.
    chunk_length: time length of chunks.
  Yields:
    Fixed-timelength chunks of data. Each tensor of inputs, hints and outputs
    has dimensions chunk_length x batch_size x ... Samples are not time-padded,
    after the end of one sample immediately comes the next. Since different
    samples can have different time lengths, the beginnings and ends of samples
    within a batch do not need to coincide. For this reason, the chunked
    dataset features include two chunk_length x batch_size int tensors,
    `is_first` and `is_last`, that mark the beginning and end of each sample.
    For example, if `chunk_legnth`==6 and `batch_size`==2 and the first
    full-sample batch had one sample of length 3 and one of length 5,
    we would have a first chunked batch with the following `is_first` and
    `is_last` tensors:

    is_first = [[1, 1]    is_last = [[0, 0]     ( sample id [[0 1]
                [0, 0]               [0, 0]                  [0 1]
                [0, 0]               [1, 0]                  [0 1]
                [1, 0]               [0, 0]                  [2 1]
                [0, 0]               [0, 1]                  [2 1]
                [0, 1]]              [0, 0]]                 [2 3]] )

    while the data in the inputs, outputs and hints tensors would correspond
    to samples as identified by the sample_id indicated above for reference.
    Notice that, while in the full-sample dataset inputs and outputs have
    no time dimension, here they do; the input and output tensors are simply
    repeated along each sample's time length.
  """
  def _get_batch():
    d = next(dataset)
    return (d.features.inputs, d.features.hints, d.outputs,
            d.features.lengths.astype(int))

  inputs, hints, outputs, lengths = _get_batch()
  for inp in inputs:
    if inp.location in [specs.Location.NODE, specs.Location.EDGE]:
      batch_size = inp.data.shape[0]
      break

  io_chunk = lambda x: np.zeros((chunk_length,) + x.shape, dtype=x.dtype)
  chunk_inputs = jax.tree_util.tree_map(io_chunk, inputs)
  chunk_outputs = jax.tree_util.tree_map(io_chunk, outputs)

  hint_chunk = lambda x: np.zeros((chunk_length,) + x.shape[1:], dtype=x.dtype)
  chunk_hints = jax.tree_util.tree_map(hint_chunk, hints)

  inputs = [inputs]
  hints = [hints]
  outputs = [outputs]
  left = [lengths.copy()]
  lengths = [lengths.copy()]

  while True:
    # Create a new empty chunk
    chunk_inputs = jax.tree_util.tree_map(np.zeros_like, chunk_inputs)
    chunk_hints = jax.tree_util.tree_map(np.zeros_like, chunk_hints)
    chunk_outputs = jax.tree_util.tree_map(np.zeros_like, chunk_outputs)
    start_mark = np.zeros((chunk_length, batch_size), dtype=int)
    end_mark = np.zeros((chunk_length, batch_size), dtype=int)

    # Get enough data batches to fill the new chunk
    while np.any(np.sum(left, axis=0) < chunk_length):
      inp, hh, out, ll = _get_batch()
      inputs.append(inp)
      hints.append(hh)
      outputs.append(out)
      left.append(ll.copy())
      lengths.append(ll.copy())

    # Fill the chunk, one batch element at a time
    for i in range(batch_size):
      total, idx = 0, 0
      while total < chunk_length:
        to_add = min(left[idx][i], chunk_length - total)
        if to_add:
          start = lengths[idx][i] - left[idx][i]
          assert start >= 0
          f_io = functools.partial(_copy_io, i=i, start_dest=total,
                                   to_add=to_add)
          chunk_inputs = jax.tree_util.tree_map(f_io, inputs[idx], chunk_inputs)
          chunk_outputs = jax.tree_util.tree_map(f_io, outputs[idx],
                                                 chunk_outputs)
          f_hint = functools.partial(_copy_hint, i=i, start_source=start,
                                     start_dest=total, to_add=to_add)
          chunk_hints = jax.tree_util.tree_map(f_hint, hints[idx], chunk_hints)
          if start == 0:
            start_mark[total, i] = 1
          total += to_add
          left[idx][i] -= to_add
          assert left[idx][i] >= 0
          if left[idx][i] == 0:
            end_mark[total - 1, i] = 1
        idx += 1
      assert total == chunk_length

    while left and np.all(left[0] == 0):
      inputs.pop(0)
      hints.pop(0)
      outputs.pop(0)
      left.pop(0)
      lengths.pop(0)

    yield samplers.Feedback(
        samplers.FeaturesChunked(chunk_inputs, chunk_hints,
                                 start_mark, end_mark),
        chunk_outputs)


def create_chunked_dataset(folder, algorithm, split, batch_size, chunk_length):
  dataset = tfds.load(f'clrs_dataset/{algorithm}_{split}',
                      data_dir=folder, split=split)
  dataset = dataset.repeat()
  dataset = dataset.batch(batch_size)
  dataset = dataset.map(lambda d: _preprocess(d, algorithm=algorithm))
  dataset = dataset.as_numpy_iterator()
  return chunkify(dataset, chunk_length), specs.SPECS[algorithm]