Spaces:
Running
Running
File size: 12,696 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CLRS dataset."""
import dataclasses
import functools
from typing import Iterator
from clrs._src import probing
from clrs._src import samplers
from clrs._src import specs
import jax
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
def _correct_axis_filtering(tensor, index, name):
if 'hint_' in name:
return tensor[:, index]
else:
return tensor[index]
@dataclasses.dataclass
class CLRSConfig(tfds.core.BuilderConfig):
"""Specify the split in the variant because they have different shapes."""
split: str = ''
DEFAULT_BUILDER_CONFIGS = []
def _build_default_builder_configs():
for split in ['train', 'val', 'test']:
for alg in specs.CLRS_30_ALGS:
DEFAULT_BUILDER_CONFIGS.append(
CLRSConfig(name=f'{alg}_{split}', split=split))
_build_default_builder_configs()
class CLRSDataset(tfds.core.GeneratorBasedBuilder):
"""DatasetBuilder for my_dataset dataset."""
VERSION = tfds.core.Version('1.0.0')
RELEASE_NOTES = {
'1.0.0': 'Initial release.',
}
BUILDER_CONFIGS = DEFAULT_BUILDER_CONFIGS
_instantiated_dataset = None
_instantiated_dataset_name = ''
_instantiated_dataset_split = ''
def _num_samples(self, algorithm_name):
num_samples = samplers.CLRS30[self._builder_config.split]['num_samples'] # pytype: disable=attribute-error # always-use-return-annotations
if self._builder_config.split != 'train': # pytype: disable=attribute-error # always-use-return-annotations
# Generate more samples for those algorithms in which the number of
# signals is small.
num_samples *= specs.CLRS_30_ALGS_SETTINGS[algorithm_name][
'num_samples_multiplier']
return num_samples
def _create_data(self, single_sample):
algorithm_name = '_'.join(self._builder_config.name.split('_')[:-1])
num_samples = self._num_samples(algorithm_name)
sampler, _ = samplers.build_sampler(
algorithm_name,
seed=samplers.CLRS30[self._builder_config.split]['seed'], # pytype: disable=attribute-error # always-use-return-annotations
num_samples=num_samples,
length=samplers.CLRS30[self._builder_config.split]['length'], # pytype: disable=attribute-error # always-use-return-annotations
)
sampled_dataset = sampler.next(batch_size=1 if single_sample else None)
data = {'input_' + t.name: t.data for t in sampled_dataset.features.inputs}
# All other data points have input_, hint_, and output_ prefixes, so we
# guarantee that this key is unused.
data['lengths'] = sampled_dataset.features.lengths
data.update({'output_' + t.name: t.data for t in sampled_dataset.outputs})
data.update({
'hint_' + t.name: t.data for t in sampled_dataset.features.hints})
self._instantiated_dataset = data
def _info(self) -> tfds.core.DatasetInfo:
if tf.io.gfile.exists(self.data_dir):
info = tfds.core.DatasetInfo(builder=self)
info.read_from_directory(self.data_dir)
return info
if (self._instantiated_dataset_name != self._builder_config.name
or self._instantiated_dataset_split != self._builder_config.split): # pytype: disable=attribute-error # always-use-return-annotations
self._create_data(single_sample=True)
data = {k: _correct_axis_filtering(v, 0, k)
for k, v in self._instantiated_dataset.items()}
data_info = {
k: tfds.features.Tensor(shape=v.shape, dtype=tf.dtypes.as_dtype(
v.dtype)) for k, v in data.items()}
return tfds.core.DatasetInfo(
builder=self,
features=tfds.features.FeaturesDict(data_info),
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Download the data and define splits."""
if (self._instantiated_dataset_name != self._builder_config.name
or self._instantiated_dataset_split != self._builder_config.split): # pytype: disable=attribute-error # always-use-return-annotations
self._create_data(single_sample=False)
self._instantiated_dataset_name = self._builder_config.name
self._instantiated_dataset_split = self._builder_config.split # pytype: disable=attribute-error # always-use-return-annotations
return {self._builder_config.split: self._generate_examples()} # pytype: disable=attribute-error # always-use-return-annotations
def _generate_examples(self):
"""Generator of examples for each split."""
algorithm_name = '_'.join(self._builder_config.name.split('_')[:-1])
for i in range(self._num_samples(algorithm_name)):
data = {k: _correct_axis_filtering(v, i, k)
for k, v in self._instantiated_dataset.items()}
yield str(i), data
def _get_clrs_file_name():
return f'CLRS30_v{CLRSDataset.VERSION}.tar.gz'
def get_dataset_gcp_url():
return f'https://storage.googleapis.com/dm-clrs/{_get_clrs_file_name()}'
def get_clrs_folder():
return f'CLRS30_v{CLRSDataset.VERSION}'
def _preprocess(data_point, algorithm=None):
"""Convert sampled inputs into DataPoints."""
inputs = []
outputs = []
hints = []
lengths = None
for name, data in data_point.items():
if name == 'lengths':
lengths = data
continue
data_point_name = name.split('_')
name = '_'.join(data_point_name[1:])
(stage, location, dp_type) = specs.SPECS[algorithm][name]
assert stage == data_point_name[0]
if stage == specs.Stage.HINT:
data = tf.experimental.numpy.swapaxes(data, 0, 1)
dp = probing.DataPoint(name, location, dp_type, data)
if stage == specs.Stage.INPUT:
inputs.append(dp)
elif stage == specs.Stage.OUTPUT:
outputs.append(dp)
else:
hints.append(dp)
return samplers.Feedback(
samplers.Features(tuple(inputs), tuple(hints), lengths), tuple(outputs))
def create_dataset(folder, algorithm, split, batch_size):
dataset = tfds.load(f'clrs_dataset/{algorithm}_{split}',
data_dir=folder, split=split)
num_samples = len(dataset) # Must be done here for correct size
dataset = dataset.repeat()
dataset = dataset.batch(batch_size)
return (dataset.map(lambda d: _preprocess(d, algorithm=algorithm)),
num_samples,
specs.SPECS[algorithm])
def _copy_hint(source, dest, i, start_source, start_dest, to_add):
"""Copy from full-sample hint to a hint chunk."""
assert np.all(dest[start_dest:, i:] == 0)
assert start_dest < dest.shape[0]
assert start_dest + to_add <= dest.shape[0]
assert start_source < source.shape[0]
assert start_source + to_add <= source.shape[0]
dest[start_dest:start_dest+to_add, i] = source[
start_source:start_source+to_add, i]
return dest
def _copy_io(source, dest, i, start_dest, to_add):
"""Copy from an input or output to an input or output chunk."""
assert np.all(dest[start_dest:, i:] == 0)
dest[start_dest:start_dest+to_add, i] = source[i]
return dest
def chunkify(dataset: Iterator[samplers.Feedback], chunk_length: int):
"""Generator of fixed-length chunks from full-trajectory samples.
Args:
dataset: full-sample dataset as numpy iterator.
chunk_length: time length of chunks.
Yields:
Fixed-timelength chunks of data. Each tensor of inputs, hints and outputs
has dimensions chunk_length x batch_size x ... Samples are not time-padded,
after the end of one sample immediately comes the next. Since different
samples can have different time lengths, the beginnings and ends of samples
within a batch do not need to coincide. For this reason, the chunked
dataset features include two chunk_length x batch_size int tensors,
`is_first` and `is_last`, that mark the beginning and end of each sample.
For example, if `chunk_legnth`==6 and `batch_size`==2 and the first
full-sample batch had one sample of length 3 and one of length 5,
we would have a first chunked batch with the following `is_first` and
`is_last` tensors:
is_first = [[1, 1] is_last = [[0, 0] ( sample id [[0 1]
[0, 0] [0, 0] [0 1]
[0, 0] [1, 0] [0 1]
[1, 0] [0, 0] [2 1]
[0, 0] [0, 1] [2 1]
[0, 1]] [0, 0]] [2 3]] )
while the data in the inputs, outputs and hints tensors would correspond
to samples as identified by the sample_id indicated above for reference.
Notice that, while in the full-sample dataset inputs and outputs have
no time dimension, here they do; the input and output tensors are simply
repeated along each sample's time length.
"""
def _get_batch():
d = next(dataset)
return (d.features.inputs, d.features.hints, d.outputs,
d.features.lengths.astype(int))
inputs, hints, outputs, lengths = _get_batch()
for inp in inputs:
if inp.location in [specs.Location.NODE, specs.Location.EDGE]:
batch_size = inp.data.shape[0]
break
io_chunk = lambda x: np.zeros((chunk_length,) + x.shape, dtype=x.dtype)
chunk_inputs = jax.tree_util.tree_map(io_chunk, inputs)
chunk_outputs = jax.tree_util.tree_map(io_chunk, outputs)
hint_chunk = lambda x: np.zeros((chunk_length,) + x.shape[1:], dtype=x.dtype)
chunk_hints = jax.tree_util.tree_map(hint_chunk, hints)
inputs = [inputs]
hints = [hints]
outputs = [outputs]
left = [lengths.copy()]
lengths = [lengths.copy()]
while True:
# Create a new empty chunk
chunk_inputs = jax.tree_util.tree_map(np.zeros_like, chunk_inputs)
chunk_hints = jax.tree_util.tree_map(np.zeros_like, chunk_hints)
chunk_outputs = jax.tree_util.tree_map(np.zeros_like, chunk_outputs)
start_mark = np.zeros((chunk_length, batch_size), dtype=int)
end_mark = np.zeros((chunk_length, batch_size), dtype=int)
# Get enough data batches to fill the new chunk
while np.any(np.sum(left, axis=0) < chunk_length):
inp, hh, out, ll = _get_batch()
inputs.append(inp)
hints.append(hh)
outputs.append(out)
left.append(ll.copy())
lengths.append(ll.copy())
# Fill the chunk, one batch element at a time
for i in range(batch_size):
total, idx = 0, 0
while total < chunk_length:
to_add = min(left[idx][i], chunk_length - total)
if to_add:
start = lengths[idx][i] - left[idx][i]
assert start >= 0
f_io = functools.partial(_copy_io, i=i, start_dest=total,
to_add=to_add)
chunk_inputs = jax.tree_util.tree_map(f_io, inputs[idx], chunk_inputs)
chunk_outputs = jax.tree_util.tree_map(f_io, outputs[idx],
chunk_outputs)
f_hint = functools.partial(_copy_hint, i=i, start_source=start,
start_dest=total, to_add=to_add)
chunk_hints = jax.tree_util.tree_map(f_hint, hints[idx], chunk_hints)
if start == 0:
start_mark[total, i] = 1
total += to_add
left[idx][i] -= to_add
assert left[idx][i] >= 0
if left[idx][i] == 0:
end_mark[total - 1, i] = 1
idx += 1
assert total == chunk_length
while left and np.all(left[0] == 0):
inputs.pop(0)
hints.pop(0)
outputs.pop(0)
left.pop(0)
lengths.pop(0)
yield samplers.Feedback(
samplers.FeaturesChunked(chunk_inputs, chunk_hints,
start_mark, end_mark),
chunk_outputs)
def create_chunked_dataset(folder, algorithm, split, batch_size, chunk_length):
dataset = tfds.load(f'clrs_dataset/{algorithm}_{split}',
data_dir=folder, split=split)
dataset = dataset.repeat()
dataset = dataset.batch(batch_size)
dataset = dataset.map(lambda d: _preprocess(d, algorithm=algorithm))
dataset = dataset.as_numpy_iterator()
return chunkify(dataset, chunk_length), specs.SPECS[algorithm]
|