Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +24 -0
- indexer.py +53 -0
- requirements.txt +14 -0
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from indexer import index_text, answer_query
|
| 3 |
+
|
| 4 |
+
# Gradio interface function to handle the RAG system
|
| 5 |
+
def rag_system(query):
|
| 6 |
+
# Index the input text
|
| 7 |
+
vectorstore = index_text()
|
| 8 |
+
|
| 9 |
+
# Answer the query based on the indexed text
|
| 10 |
+
answer = answer_query(query, vectorstore)
|
| 11 |
+
|
| 12 |
+
return answer
|
| 13 |
+
|
| 14 |
+
# Build the Gradio interface
|
| 15 |
+
iface = gr.Interface(
|
| 16 |
+
fn=rag_system,
|
| 17 |
+
inputs=["text"],
|
| 18 |
+
outputs="text",
|
| 19 |
+
title="AI Alignment Bot",
|
| 20 |
+
description="If the model can't answer, it will say sorry I don't know"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Launch the app
|
| 24 |
+
iface.launch()
|
indexer.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_community.vectorstores import FAISS
|
| 2 |
+
from langchain_core.documents import Document
|
| 3 |
+
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
| 4 |
+
import os
|
| 5 |
+
from google import genai
|
| 6 |
+
from google.genai import types
|
| 7 |
+
|
| 8 |
+
# Set up the Gemini API key
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
def index_text():
|
| 12 |
+
|
| 13 |
+
os.environ["NVIDIA_API_KEY"] ="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"
|
| 14 |
+
|
| 15 |
+
nvidia_embeddings = NVIDIAEmbeddings(
|
| 16 |
+
model="nvidia/llama-3.2-nv-embedqa-1b-v2",
|
| 17 |
+
truncate="NONE"
|
| 18 |
+
)
|
| 19 |
+
vectorstore = FAISS.load_local("nvidia_faiss_index", embeddings=nvidia_embeddings,allow_dangerous_deserialization=True)
|
| 20 |
+
return vectorstore
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def answer_query(query, vectorstore):
|
| 24 |
+
RAG_TEMPLATE = """
|
| 25 |
+
#CONTEXT:
|
| 26 |
+
{context}
|
| 27 |
+
|
| 28 |
+
QUERY:
|
| 29 |
+
{query}
|
| 30 |
+
|
| 31 |
+
Use the provided context to answer the user query. Only use the provided context to answer the query.
|
| 32 |
+
If you do not know the answer, or it's not contained in the provided context, respond with "I don't know".
|
| 33 |
+
"""
|
| 34 |
+
os.environ["GEMINI_API_KEY"] = "AIzaSyCP3iHlrhG-aDKaZlNKzYE3yXA-7pLGCxM"
|
| 35 |
+
client = genai.Client()
|
| 36 |
+
# Get relevant documents
|
| 37 |
+
retriever = vectorstore.as_retriever()
|
| 38 |
+
search_results = retriever.invoke(query, k=2)
|
| 39 |
+
|
| 40 |
+
# Combine context from retrieved documents
|
| 41 |
+
context = " ".join([doc.page_content for doc in search_results])
|
| 42 |
+
|
| 43 |
+
# Build prompt
|
| 44 |
+
prompt = RAG_TEMPLATE.format(context=context, query=query)
|
| 45 |
+
|
| 46 |
+
# Generate response using Gemini
|
| 47 |
+
response = client.models.generate_content(
|
| 48 |
+
model="gemini-2.5-pro",
|
| 49 |
+
contents=prompt,
|
| 50 |
+
config=types.GenerateContentConfig(),
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
return response.text
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
langchain
|
| 3 |
+
langchain_community
|
| 4 |
+
langchain-core
|
| 5 |
+
transformers
|
| 6 |
+
faiss-cpu
|
| 7 |
+
sentence-transformers
|
| 8 |
+
huggingface_hub
|
| 9 |
+
pydantic
|
| 10 |
+
google-genai
|
| 11 |
+
langchain_nvidia_ai_endpoints
|
| 12 |
+
langchain_community
|
| 13 |
+
langchain_core
|
| 14 |
+
faiss-cpu
|