NER / app.py
dslim's picture
fix
2efee62
raw
history blame
439 Bytes
import gradio as gr
from transformers import pipeline
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
examples = [
"Does Chicago have any stores and does Joe live here?",
]
def ner(text):
output = ner_pipeline(text)
return {"text": text, "entities": output}
demo = gr.Interface(
ner,
gr.Textbox(placeholder="Enter sentence here..."),
gr.HighlightedText(),
examples=examples,
)
demo.launch()