File size: 16,495 Bytes
e94a434
 
590ee2f
 
e94a434
590ee2f
 
 
715fd06
abf23c4
4088f89
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77ab4a2
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8a298b
590ee2f
e94a434
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e94a434
 
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
fbe27ae
590ee2f
 
9e87bd5
590ee2f
 
 
 
 
 
 
 
9e87bd5
590ee2f
 
 
 
 
 
 
 
9e87bd5
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e87bd5
590ee2f
 
 
9e87bd5
590ee2f
 
 
 
 
 
 
 
 
 
9e87bd5
590ee2f
 
 
 
9e87bd5
590ee2f
 
 
 
 
 
 
 
 
 
 
 
9e87bd5
590ee2f
 
 
 
 
 
 
 
 
c53190e
590ee2f
 
 
 
 
 
 
77ab4a2
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edd31b5
590ee2f
 
9e87bd5
590ee2f
 
9e87bd5
590ee2f
 
 
 
 
 
 
9e87bd5
590ee2f
 
 
 
 
 
 
9e87bd5
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabef59
590ee2f
 
715fd06
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715fd06
590ee2f
 
715fd06
590ee2f
abf23c4
590ee2f
 
abf23c4
590ee2f
715fd06
590ee2f
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# coding=utf-8
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import altair as alt
from transformers import pipeline
import fasttext
from huggingface_hub import hf_hub_download
import json
import os
import re
import string
import base64
from typing import List, Tuple, Dict, Optional
import logging

# Configure page
st.set_page_config(
    page_title="South African Language Identification",
    page_icon="πŸ‡ΏπŸ‡¦",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better styling
st.markdown("""
<style>
    .main-header {
        text-align: center;
        padding: 1rem 0;
        background: linear-gradient(90deg, #ff6b35, #f7931e);
        color: white;
        border-radius: 10px;
        margin-bottom: 2rem;
    }
    .model-card {
        background: #f8f9fa;
        padding: 1rem;
        border-radius: 8px;
        border-left: 4px solid #ff6b35;
        margin: 1rem 0;
    }
    .result-container {
        background: white;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 2px 10px rgba(0,0,0,0.1);
        margin: 1rem 0;
    }
    .metric-card {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        padding: 1rem;
        border-radius: 8px;
        text-align: center;
    }
</style>
""", unsafe_allow_html=True)

# Constants and Configuration
MODEL_CONFIGS = {
    "za-bert": {
        "name": "ZA-BERT",
        "model_id": "dsfsi/za-lid-bert",
        "description": "Lightweight BERT-based model trained on South African languages",
        "recommended": True
    },
    "xlmr-large": {
        "name": "XLM-R Large",
        "model_id": "dsfsi/za-xlmrlarge-lid",
        "description": "XLM-RoBERTa Large model fine-tuned for SA languages"
    },
    "serengeti": {
        "name": "Serengeti",
        "model_id": "dsfsi/za-serengeti-lid",
        "description": "Afri-centric model with superior performance"
    },
    "afriberta": {
        "name": "AfriBERTa",
        "model_id": "dsfsi/za-afriberta-lid",
        "description": "African-focused BERT model"
    },
    "afro-xlmr": {
        "name": "Afro-XLM-R",
        "model_id": "dsfsi/za-afro-xlmr-base-lid",
        "description": "African-centric XLM-RoBERTa model"
    },
    "afrolm": {
        "name": "AfroLM",
        "model_id": "dsfsi/za-afrolm-lid",
        "description": "African language model"
    }
}

# Utility Functions
@st.cache_data
def load_language_names() -> Dict[str, str]:
    """Load language names mapping"""
    try:
        with open("assets/language_names.json", 'r') as f:
            return json.load(f)
    except FileNotFoundError:
        # Fallback mapping for common South African languages
        return {
            "afr": "Afrikaans",
            "eng": "English", 
            "nso": "Northern Sotho",
            "sot": "Sesotho",
            "ssw": "Siswati",
            "tsn": "Setswana",
            "tso": "Xitsonga",
            "ven": "Tshivenda",
            "xho": "isiXhosa",
            "zul": "isiZulu",
            "nbl": "isiNdebele",
            "und": "Undetermined"
        }

@st.cache_resource
def load_model(model_key: str):
    """Load and cache models"""
    try:
        config = MODEL_CONFIGS[model_key]
        model = pipeline("text-classification", model=config["model_id"])
        return model
    except Exception as e:
        st.error(f"Error loading model {model_key}: {str(e)}")
        return None

def preprocess_text(text: str) -> str:
    """Clean and preprocess input text"""
    if not text or not text.strip():
        return ""
    
    # Basic cleaning
    text = text.replace('\n', ' ')
    
    # Remove problematic characters
    replacement_map = {ord(c): ' ' for c in ':β€’#{|}' + string.digits}
    text = text.translate(replacement_map)
    
    # Normalize whitespace
    text = re.sub(r'\s+', ' ', text).strip()
    
    return text

def get_language_name(label: str, lang_names: Dict[str, str]) -> str:
    """Get language name from label"""
    if '_' in label:
        iso_code = label.split('_')[0]
    else:
        iso_code = label
    
    return lang_names.get(iso_code, label)

def predict_language(text: str, model, lang_names: Dict[str, str]) -> Tuple[str, float, str]:
    """Predict language for given text"""
    if not model or not text.strip():
        return "und", 0.0, "Undetermined"
    
    try:
        processed_text = preprocess_text(text)
        if not processed_text:
            return "und", 0.0, "Undetermined"
        
        result = model(processed_text)
        if isinstance(result, list) and len(result) > 0:
            prediction = result[0]
            label = prediction['label']
            confidence = prediction['score']
            language_name = get_language_name(label, lang_names)
            return label, confidence, language_name
        
        return "und", 0.0, "Undetermined"
    
    except Exception as e:
        st.error(f"Prediction error: {str(e)}")
        return "und", 0.0, "Error"

def create_confidence_plot(language: str, confidence: float) -> plt.Figure:
    """Create a confidence visualization"""
    fig, ax = plt.subplots(figsize=(10, 2))
    
    # Colors
    primary_color = "#ff6b35"
    bg_color = "#f8f9fa"
    text_color = "#2c3e50"
    
    # Create horizontal bar
    ax.barh([0], [confidence], color=primary_color, height=0.6, alpha=0.8)
    ax.barh([0], [1-confidence], left=[confidence], color=bg_color, height=0.6, alpha=0.3)
    
    # Styling
    ax.set_xlim(0, 1)
    ax.set_ylim(-0.5, 0.5)
    ax.set_xlabel("Confidence Score", fontsize=12, color=text_color)
    ax.set_title(f"Language: {language} (Confidence: {confidence:.3f})", 
                fontsize=14, fontweight='bold', color=text_color, pad=20)
    
    # Remove y-axis and spines
    ax.set_yticks([])
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_visible(False)
    
    # Add confidence text
    ax.text(confidence/2, 0, f"{confidence:.1%}", 
           ha='center', va='center', fontweight='bold', color='white')
    
    plt.tight_layout()
    return fig

def render_paper_info():
    """Render paper information and citation"""
    st.markdown("### πŸ“„ Research Paper")
    
    col1, col2 = st.columns([2, 1])
    
    with col1:
        st.markdown("""
        **"From N-grams to Pre-trained Multilingual Models For Language Identification"**
        
        *Authors: Thapelo Andrew Sindane, Vukosi Marivate*
        
        Published in: Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities (2024)
        
        This research investigates N-gram models and large pre-trained multilingual models for Language Identification 
        across 11 South African languages, showing that Serengeti performs best across all model types.
        """)
    
    with col2:
        st.markdown("""
        **Links:**
        - [πŸ“– Paper](https://aclanthology.org/2024.nlp4dh-1.22/)
        - [πŸ€— HuggingFace](https://huggingface.co/dsfsi)
        - [πŸ’» GitHub](https://github.com/dsfsi/za-lid)
        """)

def render_citation():
    """Render BibTeX citation"""
    citation = """@inproceedings{sindane-marivate-2024-n,
    title = "From N-grams to Pre-trained Multilingual Models For Language Identification",
    author = "Sindane, Thapelo Andrew and Marivate, Vukosi",
    editor = "HΓ€mΓ€lΓ€inen, Mika and Γ–hman, Emily and Miyagawa, So and Alnajjar, Khalid and Bizzoni, Yuri",
    booktitle = "Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities",
    month = nov,
    year = "2024",
    address = "Miami, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.nlp4dh-1.22/",
    doi = "10.18653/v1/2024.nlp4dh-1.22",
    pages = "229--239"
}"""
    
    st.code(citation, language='bibtex')

def main():
    # Header
    st.markdown("""
    <div class="main-header">
        <h1>πŸ‡ΏπŸ‡¦ South African Language Identification</h1>
        <p>Multilingual Language Detection for South African Languages</p>
    </div>
    """, unsafe_allow_html=True)
    
    # Load language names
    lang_names = load_language_names()
    
    # Sidebar
    with st.sidebar:
        st.header("βš™οΈ Model Configuration")
        
        # Model selection
        selected_model = st.selectbox(
            "Choose Model:",
            options=list(MODEL_CONFIGS.keys()),
            format_func=lambda x: f"{'⭐ ' if MODEL_CONFIGS[x].get('recommended') else ''}{MODEL_CONFIGS[x]['name']}",
            index=0,
            help="Select the language identification model"
        )
        
        # Model info
        model_config = MODEL_CONFIGS[selected_model]
        st.markdown(f"""
        <div class="model-card">
            <h4>{model_config['name']}</h4>
            <p>{model_config['description']}</p>
        </div>
        """, unsafe_allow_html=True)
        
        # Supported languages
        st.subheader("πŸ“‹ Supported Languages")
        supported_langs = [
            "🏴󠁺󠁑󠁺󠁑󠁿 Afrikaans", "πŸ‡¬πŸ‡§ English", "🌍 Northern Sotho", 
            "🌍 Sesotho", "🌍 Siswati", "🌍 Setswana",
            "🌍 Xitsonga", "🌍 Tshivenda", "🌍 isiXhosa", 
            "🌍 isiZulu", "🌍 isiNdebele"
        ]
        for lang in supported_langs:
            st.write(f"β€’ {lang}")
    
    # Main content
    tab1, tab2, tab3 = st.tabs(["πŸ” Single Text", "πŸ“ Bulk Analysis", "πŸ“„ About"])
    
    with tab1:
        st.header("Single Text Analysis")
        
        # Text input
        user_text = st.text_area(
            "Enter text to identify language:",
            placeholder="Type or paste your text here...",
            height=100,
            help="Enter text in any South African language"
        )
        
        col1, col2, col3 = st.columns([1, 1, 2])
        
        with col1:
            analyze_button = st.button("πŸ” Analyze", type="primary", use_container_width=True)
        
        with col2:
            clear_button = st.button("πŸ—‘οΈ Clear", use_container_width=True)
            if clear_button:
                st.rerun()
        
        if analyze_button and user_text.strip():
            with st.spinner("Analyzing language..."):
                # Load model
                model = load_model(selected_model)
                
                if model:
                    # Predict
                    label, confidence, language_name = predict_language(user_text, model, lang_names)
                    
                    # Results
                    st.markdown("### πŸ“Š Results")
                    
                    # Metrics
                    col1, col2, col3 = st.columns(3)
                    
                    with col1:
                        st.markdown(f"""
                        <div class="metric-card">
                            <h3>{language_name}</h3>
                            <p>Detected Language</p>
                        </div>
                        """, unsafe_allow_html=True)
                    
                    with col2:
                        st.markdown(f"""
                        <div class="metric-card">
                            <h3>{confidence:.1%}</h3>
                            <p>Confidence</p>
                        </div>
                        """, unsafe_allow_html=True)
                    
                    with col3:
                        st.markdown(f"""
                        <div class="metric-card">
                            <h3>{label}</h3>
                            <p>Language Code</p>
                        </div>
                        """, unsafe_allow_html=True)
                    
                    # Confidence visualization
                    st.markdown("### πŸ“ˆ Confidence Visualization")
                    fig = create_confidence_plot(language_name, confidence)
                    st.pyplot(fig)
                    
                else:
                    st.error("Failed to load the model. Please try again.")
        
        elif analyze_button:
            st.warning("Please enter some text to analyze.")
    
    with tab2:
        st.header("Bulk Text Analysis")
        
        uploaded_file = st.file_uploader(
            "Upload a text file",
            type=['txt', 'csv'],
            help="Upload a .txt file with one sentence per line, or a CSV file with a 'text' column"
        )
        
        if uploaded_file:
            try:
                # Read file
                if uploaded_file.name.endswith('.csv'):
                    df = pd.read_csv(uploaded_file)
                    if 'text' not in df.columns:
                        st.error("CSV file must contain a 'text' column")
                        st.stop()
                    texts = df['text'].astype(str).tolist()
                else:
                    content = uploaded_file.read().decode('utf-8')
                    texts = [line.strip() for line in content.split('\n') if line.strip()]
                
                st.success(f"Loaded {len(texts)} texts for analysis")
                
                if st.button("πŸš€ Analyze All", type="primary"):
                    model = load_model(selected_model)
                    
                    if model:
                        results = []
                        progress_bar = st.progress(0)
                        
                        for i, text in enumerate(texts):
                            label, confidence, language_name = predict_language(text, model, lang_names)
                            results.append({
                                'Text': text[:100] + '...' if len(text) > 100 else text,
                                'Language': language_name,
                                'Code': label,
                                'Confidence': confidence
                            })
                            progress_bar.progress((i + 1) / len(texts))
                        
                        # Results DataFrame
                        results_df = pd.DataFrame(results)
                        
                        # Display results
                        st.markdown("### πŸ“Š Analysis Results")
                        st.dataframe(results_df, use_container_width=True)
                        
                        # Summary statistics
                        col1, col2 = st.columns(2)
                        
                        with col1:
                            st.markdown("### πŸ“ˆ Language Distribution")
                            lang_counts = results_df['Language'].value_counts()
                            st.bar_chart(lang_counts)
                        
                        with col2:
                            st.markdown("### πŸ“Š Average Confidence by Language")
                            avg_conf = results_df.groupby('Language')['Confidence'].mean().sort_values(ascending=False)
                            st.bar_chart(avg_conf)
                        
                        # Download button
                        csv_data = results_df.to_csv(index=False)
                        st.download_button(
                            label="πŸ“₯ Download Results (CSV)",
                            data=csv_data,
                            file_name="language_identification_results.csv",
                            mime="text/csv"
                        )
                    
                    else:
                        st.error("Failed to load the model.")
            
            except Exception as e:
                st.error(f"Error processing file: {str(e)}")
    
    with tab3:
        render_paper_info()
        
        st.markdown("---")
        
        st.markdown("### πŸ“– Citation")
        render_citation()
        
        st.markdown("---")
        
        st.markdown("""
        ### πŸ›οΈ Acknowledgments
        
        This work is part of the Data Science for Social Impact Research Group at the University of Pretoria.
        
        **Contact:**
        - πŸ“§ Email: [email protected]
        - 🐦 Twitter: [@VukosiiM](https://twitter.com/VukosiiM)
        - 🌐 Website: [dsfsi.github.io](https://dsfsi.github.io)
        """)

if __name__ == "__main__":
    main()