Create app.py (#1)
Browse files- Create app.py (704f323bc16e87f7184a9b440f14e6d51fca7606)
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
from huggingface_hub import snapshot_download
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from scripts.inference import inference_process
|
| 6 |
+
import argparse
|
| 7 |
+
|
| 8 |
+
# Download the repository contents into a directory
|
| 9 |
+
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo")
|
| 10 |
+
|
| 11 |
+
# Define the new directory path for the pretrained models
|
| 12 |
+
new_dir = 'pretrained_models'
|
| 13 |
+
|
| 14 |
+
# Ensure the new directory exists
|
| 15 |
+
os.makedirs(new_dir, exist_ok=True)
|
| 16 |
+
|
| 17 |
+
# Move all contents from the downloaded directory to the new directory
|
| 18 |
+
for filename in os.listdir(hallo_dir):
|
| 19 |
+
shutil.move(os.path.join(hallo_dir, filename), os.path.join(new_dir, filename))
|
| 20 |
+
|
| 21 |
+
def run_inference(source_image, driving_audio, gr.Progress(track_tqdm=True)):
|
| 22 |
+
# Construct the argparse.Namespace object with all necessary attributes
|
| 23 |
+
args = argparse.Namespace(
|
| 24 |
+
config='configs/inference/default.yaml', # Adjust this path as necessary
|
| 25 |
+
source_image=source_image.name,
|
| 26 |
+
driving_audio=driving_audio.name,
|
| 27 |
+
output='output.mp4', # You might want to manage output paths dynamically
|
| 28 |
+
pose_weight=1.0,
|
| 29 |
+
face_weight=1.0,
|
| 30 |
+
lip_weight=1.0,
|
| 31 |
+
face_expand_ratio=1.2,
|
| 32 |
+
checkpoint=None # Adjust or set this according to your checkpointing strategy
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Call the imported function
|
| 36 |
+
inference_process(args)
|
| 37 |
+
|
| 38 |
+
# Return output or path to output
|
| 39 |
+
return 'output.mp4' # Modify based on your output handling
|
| 40 |
+
|
| 41 |
+
iface = gr.Interface(
|
| 42 |
+
fn=run_inference,
|
| 43 |
+
inputs=[gr.inputs.Image(type="file"), gr.inputs.Audio(type="file")],
|
| 44 |
+
outputs="text"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
iface.launch()
|