import random import torch from PIL import Image import requests def classify(model, imgPath, trans=None, classes=[], device=torch.device("cpu")): try: model = model.eval() img = imgPath img = img.convert("RGB") img = trans(img) img = img.unsqueeze(0) img = img.to(device) output = model(img) _, pred = torch.max(output, 1) procent = torch.sigmoid(output) return f"It {classes[pred.item()]} i'm {procent[0][pred[0]]*100:.2f}% sure" except Exception: return "Something went wrong😕, please notify the developer with the following message: " + str(Exception) def get_random_quote(): with open("quotes.txt", "r") as file: quotes = file.readlines() return quotes[random.randint(0, len(quotes)-1)]