Spaces:
Running
on
Zero
Running
on
Zero
with to(torch.bfloat16 & logging level
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import traceback
|
2 |
-
|
3 |
from typing import Optional
|
4 |
import spaces
|
5 |
import gradio as gr
|
@@ -22,7 +22,10 @@ import torch
|
|
22 |
from transformers import AutoModelForCausalLM
|
23 |
from transformers import AutoProcessor
|
24 |
|
25 |
-
logger = getLogger(__name__)
|
|
|
|
|
|
|
26 |
|
27 |
# Define repository and local directory
|
28 |
repo_id = "microsoft/OmniParser-v2.0" # HF repo
|
@@ -36,6 +39,8 @@ magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_
|
|
36 |
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
|
37 |
magam_model.to("cuda")
|
38 |
|
|
|
|
|
39 |
# Download the entire repository
|
40 |
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
41 |
|
@@ -93,11 +98,12 @@ def get_som_response(instruction, image_som):
|
|
93 |
add_generation_prompt=True
|
94 |
)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
101 |
|
102 |
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
103 |
with torch.inference_mode():
|
@@ -132,11 +138,12 @@ def get_qa_response(instruction, image):
|
|
132 |
add_generation_prompt=True
|
133 |
)
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
140 |
|
141 |
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
142 |
with torch.inference_mode():
|
|
|
1 |
import traceback
|
2 |
+
import logging
|
3 |
from typing import Optional
|
4 |
import spaces
|
5 |
import gradio as gr
|
|
|
22 |
from transformers import AutoModelForCausalLM
|
23 |
from transformers import AutoProcessor
|
24 |
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
logger.setLevel(logging.WARNING)
|
27 |
+
handler = logging.StreamHandler()
|
28 |
+
logger.addHandler(handler)
|
29 |
|
30 |
# Define repository and local directory
|
31 |
repo_id = "microsoft/OmniParser-v2.0" # HF repo
|
|
|
39 |
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
|
40 |
magam_model.to("cuda")
|
41 |
|
42 |
+
logger.warning(f"The repository is downloading to: {local_dir}")
|
43 |
+
|
44 |
# Download the entire repository
|
45 |
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
46 |
|
|
|
98 |
add_generation_prompt=True
|
99 |
)
|
100 |
|
101 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
102 |
+
inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
|
103 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0).to(torch.bfloat16) # Add .to(torch.bfloat16) here for explicit casting
|
104 |
+
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
105 |
+
# inputs = inputs.to("cuda")
|
106 |
+
inputs = inputs.to("cuda", dtype=torch.bfloat16)
|
107 |
|
108 |
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
109 |
with torch.inference_mode():
|
|
|
138 |
add_generation_prompt=True
|
139 |
)
|
140 |
|
141 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
142 |
+
inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt")
|
143 |
+
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0).to(torch.bfloat16) # Add .to(torch.bfloat16) here for explicit casting
|
144 |
+
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
|
145 |
+
# inputs = inputs.to("cuda")
|
146 |
+
inputs = inputs.to("cuda", dtype=torch.bfloat16)
|
147 |
|
148 |
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
|
149 |
with torch.inference_mode():
|