Spaces:
Runtime error
Runtime error
# code copy from: https://github.com/parlance-zz/g-diffuser-bot | |
import cv2 | |
import numpy as np | |
def np_img_grey_to_rgb(data): | |
if data.ndim == 3: | |
return data | |
return np.expand_dims(data, 2) * np.ones((1, 1, 3)) | |
def convolve(data1, data2): # fast convolution with fft | |
if data1.ndim != data2.ndim: # promote to rgb if mismatch | |
if data1.ndim < 3: | |
data1 = np_img_grey_to_rgb(data1) | |
if data2.ndim < 3: | |
data2 = np_img_grey_to_rgb(data2) | |
return ifft2(fft2(data1) * fft2(data2)) | |
def fft2(data): | |
if data.ndim > 2: # multiple channels | |
out_fft = np.zeros( | |
(data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128 | |
) | |
for c in range(data.shape[2]): | |
c_data = data[:, :, c] | |
out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho") | |
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c]) | |
else: # single channel | |
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128) | |
out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho") | |
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :]) | |
return out_fft | |
def ifft2(data): | |
if data.ndim > 2: # multiple channels | |
out_ifft = np.zeros( | |
(data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128 | |
) | |
for c in range(data.shape[2]): | |
c_data = data[:, :, c] | |
out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho") | |
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c]) | |
else: # single channel | |
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128) | |
out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho") | |
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :]) | |
return out_ifft | |
def get_gradient_kernel(width, height, std=3.14, mode="linear"): | |
window_scale_x = float( | |
width / min(width, height) | |
) # for non-square aspect ratios we still want a circular kernel | |
window_scale_y = float(height / min(width, height)) | |
if mode == "gaussian": | |
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x | |
kx = np.exp(-x * x * std) | |
if window_scale_x != window_scale_y: | |
y = (np.arange(height) / height * 2.0 - 1.0) * window_scale_y | |
ky = np.exp(-y * y * std) | |
else: | |
y = x | |
ky = kx | |
return np.outer(kx, ky) | |
elif mode == "linear": | |
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x | |
if window_scale_x != window_scale_y: | |
y = (np.arange(height) / height * 2.0 - 1.0) * window_scale_y | |
else: | |
y = x | |
return np.clip(1.0 - np.sqrt(np.add.outer(x * x, y * y)) * std / 3.14, 0.0, 1.0) | |
else: | |
raise Exception("Error: Unknown mode in get_gradient_kernel: {0}".format(mode)) | |
def image_blur(data, std=3.14, mode="linear"): | |
width = data.shape[0] | |
height = data.shape[1] | |
kernel = get_gradient_kernel(width, height, std, mode=mode) | |
return np.real(convolve(data, kernel / np.sqrt(np.sum(kernel * kernel)))) | |
def soften_mask(mask_img, softness, space): | |
if softness == 0: | |
return mask_img | |
softness = min(softness, 1.0) | |
space = np.clip(space, 0.0, 1.0) | |
original_max_opacity = np.max(mask_img) | |
out_mask = mask_img <= 0.0 | |
blurred_mask = image_blur(mask_img, 3.5 / softness, mode="linear") | |
blurred_mask = np.maximum(blurred_mask - np.max(blurred_mask[out_mask]), 0.0) | |
mask_img *= blurred_mask # preserve partial opacity in original input mask | |
mask_img /= np.max(mask_img) # renormalize | |
mask_img = np.clip(mask_img - space, 0.0, 1.0) # make space | |
mask_img /= np.max(mask_img) # and renormalize again | |
mask_img *= original_max_opacity # restore original max opacity | |
return mask_img | |
def expand_image( | |
cv2_img, top: int, right: int, bottom: int, left: int, softness: float, space: float | |
): | |
assert cv2_img.shape[2] == 3 | |
origin_h, origin_w = cv2_img.shape[:2] | |
new_width = cv2_img.shape[1] + left + right | |
new_height = cv2_img.shape[0] + top + bottom | |
# TODO: which is better? | |
# new_img = np.random.randint(0, 255, (new_height, new_width, 3), np.uint8) | |
new_img = cv2.copyMakeBorder( | |
cv2_img, top, bottom, left, right, cv2.BORDER_REPLICATE | |
) | |
mask_img = np.zeros((new_height, new_width), np.uint8) | |
mask_img[top : top + cv2_img.shape[0], left : left + cv2_img.shape[1]] = 255 | |
if softness > 0.0: | |
mask_img = soften_mask(mask_img / 255.0, softness / 100.0, space / 100.0) | |
mask_img = (np.clip(mask_img, 0.0, 1.0) * 255.0).astype(np.uint8) | |
mask_image = 255.0 - mask_img # extract mask from alpha channel and invert | |
rgb_init_image = ( | |
0.0 + new_img[:, :, 0:3] | |
) # strip mask from init_img leaving only rgb channels | |
hard_mask = np.zeros_like(cv2_img[:, :, 0]) | |
if top != 0: | |
hard_mask[0 : origin_h // 2, :] = 255 | |
if bottom != 0: | |
hard_mask[origin_h // 2 :, :] = 255 | |
if left != 0: | |
hard_mask[:, 0 : origin_w // 2] = 255 | |
if right != 0: | |
hard_mask[:, origin_w // 2 :] = 255 | |
hard_mask = cv2.copyMakeBorder( | |
hard_mask, top, bottom, left, right, cv2.BORDER_DEFAULT, value=255 | |
) | |
mask_image = np.where(hard_mask > 0, mask_image, 0) | |
return rgb_init_image.astype(np.uint8), mask_image.astype(np.uint8) | |
if __name__ == "__main__": | |
from pathlib import Path | |
current_dir = Path(__file__).parent.absolute().resolve() | |
image_path = current_dir.parent / "tests" / "bunny.jpeg" | |
init_image = cv2.imread(str(image_path)) | |
init_image, mask_image = expand_image( | |
init_image, | |
top=100, | |
right=100, | |
bottom=100, | |
left=100, | |
softness=20, | |
space=20, | |
) | |
print(mask_image.dtype, mask_image.min(), mask_image.max()) | |
print(init_image.dtype, init_image.min(), init_image.max()) | |
mask_image = mask_image.astype(np.uint8) | |
init_image = init_image.astype(np.uint8) | |
cv2.imwrite("expanded_image.png", init_image) | |
cv2.imwrite("expanded_mask.png", mask_image) | |