Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import torch.nn as nn | |
from torch import autograd | |
from model.networks import Generator, LocalDis, GlobalDis | |
from utils.tools import get_model_list, local_patch, spatial_discounting_mask | |
from utils.logger import get_logger | |
logger = get_logger() | |
class Trainer(nn.Module): | |
def __init__(self, config): | |
super(Trainer, self).__init__() | |
self.config = config | |
self.use_cuda = self.config['cuda'] | |
self.device_ids = self.config['gpu_ids'] | |
self.netG = Generator(self.config['netG'], self.use_cuda, self.device_ids) | |
self.localD = LocalDis(self.config['netD'], self.use_cuda, self.device_ids) | |
self.globalD = GlobalDis(self.config['netD'], self.use_cuda, self.device_ids) | |
self.optimizer_g = torch.optim.Adam(self.netG.parameters(), lr=self.config['lr'], | |
betas=(self.config['beta1'], self.config['beta2'])) | |
d_params = list(self.localD.parameters()) + list(self.globalD.parameters()) | |
self.optimizer_d = torch.optim.Adam(d_params, lr=config['lr'], | |
betas=(self.config['beta1'], self.config['beta2'])) | |
if self.use_cuda: | |
self.netG.to(self.device_ids[0]) | |
self.localD.to(self.device_ids[0]) | |
self.globalD.to(self.device_ids[0]) | |
def forward(self, x, bboxes, masks, ground_truth, compute_loss_g=False): | |
self.train() | |
l1_loss = nn.L1Loss() | |
losses = {} | |
x1, x2, offset_flow = self.netG(x, masks) | |
local_patch_gt = local_patch(ground_truth, bboxes) | |
x1_inpaint = x1 * masks + x * (1. - masks) | |
x2_inpaint = x2 * masks + x * (1. - masks) | |
local_patch_x1_inpaint = local_patch(x1_inpaint, bboxes) | |
local_patch_x2_inpaint = local_patch(x2_inpaint, bboxes) | |
# D part | |
# wgan d loss | |
local_patch_real_pred, local_patch_fake_pred = self.dis_forward( | |
self.localD, local_patch_gt, local_patch_x2_inpaint.detach()) | |
global_real_pred, global_fake_pred = self.dis_forward( | |
self.globalD, ground_truth, x2_inpaint.detach()) | |
losses['wgan_d'] = torch.mean(local_patch_fake_pred - local_patch_real_pred) + \ | |
torch.mean(global_fake_pred - global_real_pred) * self.config['global_wgan_loss_alpha'] | |
# gradients penalty loss | |
local_penalty = self.calc_gradient_penalty( | |
self.localD, local_patch_gt, local_patch_x2_inpaint.detach()) | |
global_penalty = self.calc_gradient_penalty(self.globalD, ground_truth, x2_inpaint.detach()) | |
losses['wgan_gp'] = local_penalty + global_penalty | |
# G part | |
if compute_loss_g: | |
sd_mask = spatial_discounting_mask(self.config) | |
losses['l1'] = l1_loss(local_patch_x1_inpaint * sd_mask, local_patch_gt * sd_mask) * \ | |
self.config['coarse_l1_alpha'] + \ | |
l1_loss(local_patch_x2_inpaint * sd_mask, local_patch_gt * sd_mask) | |
losses['ae'] = l1_loss(x1 * (1. - masks), ground_truth * (1. - masks)) * \ | |
self.config['coarse_l1_alpha'] + \ | |
l1_loss(x2 * (1. - masks), ground_truth * (1. - masks)) | |
# wgan g loss | |
local_patch_real_pred, local_patch_fake_pred = self.dis_forward( | |
self.localD, local_patch_gt, local_patch_x2_inpaint) | |
global_real_pred, global_fake_pred = self.dis_forward( | |
self.globalD, ground_truth, x2_inpaint) | |
losses['wgan_g'] = - torch.mean(local_patch_fake_pred) - \ | |
torch.mean(global_fake_pred) * self.config['global_wgan_loss_alpha'] | |
return losses, x2_inpaint, offset_flow | |
def dis_forward(self, netD, ground_truth, x_inpaint): | |
assert ground_truth.size() == x_inpaint.size() | |
batch_size = ground_truth.size(0) | |
batch_data = torch.cat([ground_truth, x_inpaint], dim=0) | |
batch_output = netD(batch_data) | |
real_pred, fake_pred = torch.split(batch_output, batch_size, dim=0) | |
return real_pred, fake_pred | |
# Calculate gradient penalty | |
def calc_gradient_penalty(self, netD, real_data, fake_data): | |
batch_size = real_data.size(0) | |
alpha = torch.rand(batch_size, 1, 1, 1) | |
alpha = alpha.expand_as(real_data) | |
if self.use_cuda: | |
alpha = alpha.cuda() | |
interpolates = alpha * real_data + (1 - alpha) * fake_data | |
interpolates = interpolates.requires_grad_().clone() | |
disc_interpolates = netD(interpolates) | |
grad_outputs = torch.ones(disc_interpolates.size()) | |
if self.use_cuda: | |
grad_outputs = grad_outputs.cuda() | |
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates, | |
grad_outputs=grad_outputs, create_graph=True, | |
retain_graph=True, only_inputs=True)[0] | |
gradients = gradients.view(batch_size, -1) | |
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() | |
return gradient_penalty | |
def inference(self, x, masks): | |
self.eval() | |
x1, x2, offset_flow = self.netG(x, masks) | |
# x1_inpaint = x1 * masks + x * (1. - masks) | |
x2_inpaint = x2 * masks + x * (1. - masks) | |
return x2_inpaint, offset_flow | |
def save_model(self, checkpoint_dir, iteration): | |
# Save generators, discriminators, and optimizers | |
gen_name = os.path.join(checkpoint_dir, 'gen_%08d.pt' % iteration) | |
dis_name = os.path.join(checkpoint_dir, 'dis_%08d.pt' % iteration) | |
opt_name = os.path.join(checkpoint_dir, 'optimizer.pt') | |
torch.save(self.netG.state_dict(), gen_name) | |
torch.save({'localD': self.localD.state_dict(), | |
'globalD': self.globalD.state_dict()}, dis_name) | |
torch.save({'gen': self.optimizer_g.state_dict(), | |
'dis': self.optimizer_d.state_dict()}, opt_name) | |
def resume(self, checkpoint_dir, iteration=0, test=False): | |
# Load generators | |
last_model_name = get_model_list(checkpoint_dir, "gen", iteration=iteration) | |
self.netG.load_state_dict(torch.load(last_model_name)) | |
iteration = int(last_model_name[-11:-3]) | |
if not test: | |
# Load discriminators | |
last_model_name = get_model_list(checkpoint_dir, "dis", iteration=iteration) | |
state_dict = torch.load(last_model_name) | |
self.localD.load_state_dict(state_dict['localD']) | |
self.globalD.load_state_dict(state_dict['globalD']) | |
# Load optimizers | |
state_dict = torch.load(os.path.join(checkpoint_dir, 'optimizer.pt')) | |
self.optimizer_d.load_state_dict(state_dict['dis']) | |
self.optimizer_g.load_state_dict(state_dict['gen']) | |
print("Resume from {} at iteration {}".format(checkpoint_dir, iteration)) | |
logger.info("Resume from {} at iteration {}".format(checkpoint_dir, iteration)) | |
return iteration | |