Spaces:
Runtime error
Runtime error
Thedatababbler
commited on
Commit
·
a5f5ad5
1
Parent(s):
93273ed
app
Browse files
app.py
CHANGED
|
@@ -7,48 +7,49 @@ tokenizer = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-u
|
|
| 7 |
model = AutoModelForMaskedLM.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
|
| 8 |
|
| 9 |
def mlm(image, text):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
}
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
# Convert inputs to PyTorch tensors
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
def to_black(image, text):
|
| 54 |
output = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
| 7 |
model = AutoModelForMaskedLM.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
|
| 8 |
|
| 9 |
def mlm(image, text):
|
| 10 |
+
print(text)
|
| 11 |
+
questions_dict = {
|
| 12 |
+
#'location': f'[CLS] Only [MASK] cells have a {cls_name}. [SEP]', #num of mask?
|
| 13 |
+
# 'location': f'[CLS] The {cls_name} normally appears at or near the [MASK] of a cell. [SEP]',
|
| 14 |
+
# 'color': f'[CLS] When a cell is histologically stained, the {cls_name} are in [MASK] color. [SEP]',
|
| 15 |
+
# 'shape': f'[CLS] Mostly the shape of {cls_name} is [MASK]. [SEP]',
|
| 16 |
+
'location': f'[CLS] The location of {text} is at [MASK]. [SEP]',
|
| 17 |
+
'color': f'[CLS] The typical color of {text} is [MASK]. [SEP]',
|
| 18 |
+
'shape': f'[CLS] The typical shape of {text} is [MASK]. [SEP]',
|
| 19 |
+
#'def': f'{cls_name} is a . [SEP]',
|
| 20 |
+
}
|
| 21 |
+
ans = list()
|
| 22 |
+
res = defaultdict()
|
| 23 |
+
device = 'cpu'
|
| 24 |
+
for k, v in questions_dict.items():
|
| 25 |
+
predicted_tokens = []
|
| 26 |
+
tokenized_text = tokenizer.tokenize(v)
|
| 27 |
+
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
|
| 28 |
+
# Create the segments tensors.
|
| 29 |
+
segments_ids = [0] * len(tokenized_text)
|
|
|
|
| 30 |
|
| 31 |
+
# Convert inputs to PyTorch tensors
|
| 32 |
+
|
| 33 |
+
tokens_tensor = torch.tensor([indexed_tokens]).to(device)
|
| 34 |
+
segments_tensors = torch.tensor([segments_ids]).to(device)
|
| 35 |
|
| 36 |
+
masked_index = tokenized_text.index('[MASK]')
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
predictions = model(tokens_tensor, segments_tensors)
|
| 39 |
+
|
| 40 |
+
_, predicted_index = torch.topk(predictions[0][0][masked_index], 1)#.item()
|
| 41 |
+
predicted_index = predicted_index.detach().cpu().numpy()
|
| 42 |
+
#print(predicted_index)
|
| 43 |
+
for idx in predicted_index:
|
| 44 |
+
predicted_tokens.append(tokenizer.convert_ids_to_tokens([idx])[0])
|
| 45 |
+
# for i in range(1):
|
| 46 |
+
# res[text][k].append(predicted_tokens)
|
| 47 |
+
print(predicted_tokens)
|
| 48 |
+
res[k] = predicted_tokens[0]
|
| 49 |
+
color, shape, loc = res['color'], res['shape'], res['location']
|
| 50 |
+
ans = f'{color} color, {shape} shape, {text} at {loc}'
|
| 51 |
+
print(ans)
|
| 52 |
+
return image, ans
|
| 53 |
|
| 54 |
def to_black(image, text):
|
| 55 |
output = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|