Spaces:
Running
Running
# /// script | |
# dependencies = [ | |
# "torch", | |
# "numpy", | |
# "kernels", | |
# ] | |
# /// | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from kernels import get_kernel, get_local_kernel | |
from utils import to_dtype, tensor_stats, set_seed, bench_context | |
from config import ( | |
NUM_EXPERTS, HIDDEN_SIZE, TOP_K, | |
BATCH_SIZE, SEQ_LEN, DTYPE, DEVICE, | |
WEIGHT_SEED, EXPERT_SEED, INPUT_SEED, GENERAL_SEED | |
) | |
from pathlib import Path | |
from collections import namedtuple | |
import os | |
# Discover the upstream artifact directory from env | |
data_dir = os.environ.get('UVNOTE_INPUT_SAVE_DATA', '.') | |
print(f"Loading weights from: {data_dir}") | |
router_weight = torch.load(Path(data_dir) / 'router_weight.pt') | |
router_bias = torch.load(Path(data_dir) / 'router_bias.pt') | |
gate_up_proj = torch.load(Path(data_dir) / 'gate_up_proj.pt') | |
gate_up_proj_bias = torch.load(Path(data_dir) / 'gate_up_proj_bias.pt') | |
down_proj = torch.load(Path(data_dir) / 'down_proj.pt') | |
down_proj_bias = torch.load(Path(data_dir) / 'down_proj_bias.pt') | |
print("Loaded shared weights from artifacts") | |
print(f"Router weight sum: {router_weight.sum().item():.6f}") | |
print(f"Gate/up sum: {gate_up_proj.sum().item():.6f}") | |
print(f"Down sum: {down_proj.sum().item():.6f}") | |
def build_megablocks_model(device: torch.device, dtype: torch.dtype): | |
# Download optimized kernels from the Hugging Face hub | |
megablocks = get_kernel("kernels-community/megablocks") | |
# megablocks = get_local_kernel( | |
# Path("/home/ubuntu/Projects/megablocks-moe/build"), "megablocks") | |
model = megablocks.layers.MegaBlocksMoeMLP() | |
# Create attribute container for expert weights | |
model.experts = namedtuple( | |
"Experts", ["gate_up_proj", "gate_up_proj_bias", "down_proj", "down_proj_bias", "hidden_size"] | |
) | |
# Use loaded router weights for consistency | |
model.router = torch.nn.Linear(HIDDEN_SIZE, NUM_EXPERTS, device=device, dtype=dtype) | |
with torch.no_grad(): | |
model.router.weight.copy_(router_weight.to(dtype)) | |
model.router.bias.copy_(router_bias.to(dtype)) | |
# Attach loaded expert weights to the experts container | |
e = model.experts | |
e.alpha = 1.702 | |
e.capacity_factor = 4 | |
e.gate_up_proj = torch.nn.Parameter(gate_up_proj.clone().to(device, dtype=dtype)) | |
e.gate_up_proj_bias = torch.nn.Parameter(gate_up_proj_bias.clone().to(device, dtype=dtype)) | |
e.down_proj = torch.nn.Parameter(down_proj.clone().to(device, dtype=dtype)) | |
e.down_proj_bias = torch.nn.Parameter(down_proj_bias.clone().to(device, dtype=dtype)) | |
e.hidden_size = HIDDEN_SIZE | |
# Log weight statistics for comparison | |
print(f"[MegaBlocks] Router weight sum: {model.router.weight.sum().item():.6f}") | |
print(f"[MegaBlocks] Gate/up projection shape: {tuple(e.gate_up_proj.shape)}, sum: {e.gate_up_proj.sum().item():.6f}") | |
print(f"[MegaBlocks] Down projection shape: {tuple(e.down_proj.shape)}, sum: {e.down_proj.sum().item():.6f}") | |
return model | |
# Create a wrapper to match the interface of other implementations | |
class MegaBlocksMoEWrapper(nn.Module): | |
def __init__(self, megablocks_model): | |
super().__init__() | |
self.model = megablocks_model | |
def forward(self, hidden_states): | |
# MegaBlocks expects input in the format (batch, seq_len, hidden_dim) | |
output, dummy_routing_weights = self.model(hidden_states) | |
# Return output and dummy routing weights for consistency with other implementations | |
# dummy_routing_weights = torch.zeros( | |
# hidden_states.shape[0] * hidden_states.shape[1], | |
# NUM_EXPERTS, | |
# device=hidden_states.device, | |
# dtype=hidden_states.dtype | |
# ) | |
return output, dummy_routing_weights | |
# Run the model | |
set_seed(GENERAL_SEED) | |
device = torch.device(DEVICE) | |
dtype = to_dtype(DTYPE) | |
print("\n=== MegaBlocks Implementation ===") | |
# Build MegaBlocks model with loaded weights | |
megablocks_model = build_megablocks_model(device, dtype) | |
model = MegaBlocksMoEWrapper(megablocks_model).to(device=device, dtype=dtype) | |
# Benchmark the model using different input tensors on each iteration | |
tokens = BATCH_SIZE * SEQ_LEN | |
input_shape = (BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE) | |
with bench_context(warmup=10, iters=50, device=device, dtype=dtype, tokens=tokens, | |
save_json="megablocks_results.json", input_shape=input_shape, input_seed_base=INPUT_SEED) as bench: | |
output, stats = bench(model) | |
print(f"\nOutput sum: {output[0].sum().item():.6f}") |