compare-moe-uvnote / cells /megablocks_run.py
drbh's picture
drbh HF Staff
Upload folder using huggingface_hub
bad4ddc verified
raw
history blame
4.52 kB
# /// script
# dependencies = [
# "torch",
# "numpy",
# "kernels",
# ]
# ///
import torch
from torch import nn
from torch.nn import functional as F
from kernels import get_kernel, get_local_kernel
from utils import to_dtype, tensor_stats, set_seed, bench_context
from config import (
NUM_EXPERTS, HIDDEN_SIZE, TOP_K,
BATCH_SIZE, SEQ_LEN, DTYPE, DEVICE,
WEIGHT_SEED, EXPERT_SEED, INPUT_SEED, GENERAL_SEED
)
from pathlib import Path
from collections import namedtuple
import os
# Discover the upstream artifact directory from env
data_dir = os.environ.get('UVNOTE_INPUT_SAVE_DATA', '.')
print(f"Loading weights from: {data_dir}")
router_weight = torch.load(Path(data_dir) / 'router_weight.pt')
router_bias = torch.load(Path(data_dir) / 'router_bias.pt')
gate_up_proj = torch.load(Path(data_dir) / 'gate_up_proj.pt')
gate_up_proj_bias = torch.load(Path(data_dir) / 'gate_up_proj_bias.pt')
down_proj = torch.load(Path(data_dir) / 'down_proj.pt')
down_proj_bias = torch.load(Path(data_dir) / 'down_proj_bias.pt')
print("Loaded shared weights from artifacts")
print(f"Router weight sum: {router_weight.sum().item():.6f}")
print(f"Gate/up sum: {gate_up_proj.sum().item():.6f}")
print(f"Down sum: {down_proj.sum().item():.6f}")
def build_megablocks_model(device: torch.device, dtype: torch.dtype):
# Download optimized kernels from the Hugging Face hub
megablocks = get_kernel("kernels-community/megablocks")
# megablocks = get_local_kernel(
# Path("/home/ubuntu/Projects/megablocks-moe/build"), "megablocks")
model = megablocks.layers.MegaBlocksMoeMLP()
# Create attribute container for expert weights
model.experts = namedtuple(
"Experts", ["gate_up_proj", "gate_up_proj_bias", "down_proj", "down_proj_bias", "hidden_size"]
)
# Use loaded router weights for consistency
model.router = torch.nn.Linear(HIDDEN_SIZE, NUM_EXPERTS, device=device, dtype=dtype)
with torch.no_grad():
model.router.weight.copy_(router_weight.to(dtype))
model.router.bias.copy_(router_bias.to(dtype))
# Attach loaded expert weights to the experts container
e = model.experts
e.alpha = 1.702
e.capacity_factor = 4
e.gate_up_proj = torch.nn.Parameter(gate_up_proj.clone().to(device, dtype=dtype))
e.gate_up_proj_bias = torch.nn.Parameter(gate_up_proj_bias.clone().to(device, dtype=dtype))
e.down_proj = torch.nn.Parameter(down_proj.clone().to(device, dtype=dtype))
e.down_proj_bias = torch.nn.Parameter(down_proj_bias.clone().to(device, dtype=dtype))
e.hidden_size = HIDDEN_SIZE
# Log weight statistics for comparison
print(f"[MegaBlocks] Router weight sum: {model.router.weight.sum().item():.6f}")
print(f"[MegaBlocks] Gate/up projection shape: {tuple(e.gate_up_proj.shape)}, sum: {e.gate_up_proj.sum().item():.6f}")
print(f"[MegaBlocks] Down projection shape: {tuple(e.down_proj.shape)}, sum: {e.down_proj.sum().item():.6f}")
return model
# Create a wrapper to match the interface of other implementations
class MegaBlocksMoEWrapper(nn.Module):
def __init__(self, megablocks_model):
super().__init__()
self.model = megablocks_model
def forward(self, hidden_states):
# MegaBlocks expects input in the format (batch, seq_len, hidden_dim)
output, dummy_routing_weights = self.model(hidden_states)
# Return output and dummy routing weights for consistency with other implementations
# dummy_routing_weights = torch.zeros(
# hidden_states.shape[0] * hidden_states.shape[1],
# NUM_EXPERTS,
# device=hidden_states.device,
# dtype=hidden_states.dtype
# )
return output, dummy_routing_weights
# Run the model
set_seed(GENERAL_SEED)
device = torch.device(DEVICE)
dtype = to_dtype(DTYPE)
print("\n=== MegaBlocks Implementation ===")
# Build MegaBlocks model with loaded weights
megablocks_model = build_megablocks_model(device, dtype)
model = MegaBlocksMoEWrapper(megablocks_model).to(device=device, dtype=dtype)
# Benchmark the model using different input tensors on each iteration
tokens = BATCH_SIZE * SEQ_LEN
input_shape = (BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE)
with bench_context(warmup=10, iters=50, device=device, dtype=dtype, tokens=tokens,
save_json="megablocks_results.json", input_shape=input_shape, input_seed_base=INPUT_SEED) as bench:
output, stats = bench(model)
print(f"\nOutput sum: {output[0].sum().item():.6f}")