Spaces:
Runtime error
Runtime error
Init - create App.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import warnings
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import whisper
|
| 6 |
+
import ssl
|
| 7 |
+
import zipfile
|
| 8 |
+
from pydub import AudioSegment
|
| 9 |
+
from pydub.silence import detect_nonsilent
|
| 10 |
+
import subprocess
|
| 11 |
+
import tempfile
|
| 12 |
+
import time
|
| 13 |
+
|
| 14 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
| 15 |
+
|
| 16 |
+
def process_audio(
|
| 17 |
+
audio_paths,
|
| 18 |
+
remove_silence=False,
|
| 19 |
+
min_silence_len=500,
|
| 20 |
+
silence_thresh=-50,
|
| 21 |
+
enable_chunking=False,
|
| 22 |
+
chunk_duration=600,
|
| 23 |
+
ffmpeg_path="ffmpeg",
|
| 24 |
+
model_size="large-v3-turbo",
|
| 25 |
+
language="de"
|
| 26 |
+
):
|
| 27 |
+
try:
|
| 28 |
+
if not audio_paths:
|
| 29 |
+
return "No files selected.", "", None
|
| 30 |
+
|
| 31 |
+
# Clean up any existing temp directory at the start
|
| 32 |
+
temp_dir = "temp_processing"
|
| 33 |
+
if os.path.exists(temp_dir):
|
| 34 |
+
for file in os.listdir(temp_dir):
|
| 35 |
+
file_path = os.path.join(temp_dir, file)
|
| 36 |
+
try:
|
| 37 |
+
if os.path.isfile(file_path):
|
| 38 |
+
os.remove(file_path)
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Error cleaning up {file_path}: {e}")
|
| 41 |
+
try:
|
| 42 |
+
os.rmdir(temp_dir)
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error removing temp directory: {e}")
|
| 45 |
+
|
| 46 |
+
# Create fresh temp directory with unique timestamp
|
| 47 |
+
temp_dir = f"temp_processing_{int(time.time())}"
|
| 48 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 49 |
+
|
| 50 |
+
processed_files = []
|
| 51 |
+
all_results = []
|
| 52 |
+
all_segments = []
|
| 53 |
+
all_txt_paths = []
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
# Step 1: Process each audio file
|
| 57 |
+
for audio_path in audio_paths:
|
| 58 |
+
if not audio_path:
|
| 59 |
+
continue
|
| 60 |
+
|
| 61 |
+
current_file = audio_path
|
| 62 |
+
temp_files = []
|
| 63 |
+
|
| 64 |
+
# Step 1a: Split audio if chunking is enabled
|
| 65 |
+
if enable_chunking:
|
| 66 |
+
base_name = os.path.splitext(os.path.basename(current_file))[0]
|
| 67 |
+
output_pattern = os.path.join(temp_dir, f"{base_name}_part_%d.mp3")
|
| 68 |
+
|
| 69 |
+
cmd = [
|
| 70 |
+
ffmpeg_path, "-i", current_file,
|
| 71 |
+
"-f", "segment",
|
| 72 |
+
"-segment_time", str(chunk_duration),
|
| 73 |
+
"-c:a", "copy",
|
| 74 |
+
"-segment_start_number", "1",
|
| 75 |
+
output_pattern
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 79 |
+
chunk_files = sorted([os.path.join(temp_dir, f) for f in os.listdir(temp_dir)
|
| 80 |
+
if f.startswith(f"{base_name}_part_")])
|
| 81 |
+
temp_files.extend(chunk_files)
|
| 82 |
+
else:
|
| 83 |
+
temp_files.append(current_file)
|
| 84 |
+
|
| 85 |
+
# Step 1b: Remove silence if requested
|
| 86 |
+
if remove_silence:
|
| 87 |
+
silence_removed_files = []
|
| 88 |
+
for file in temp_files:
|
| 89 |
+
audio = AudioSegment.from_file(file)
|
| 90 |
+
nonsilent = detect_nonsilent(
|
| 91 |
+
audio,
|
| 92 |
+
min_silence_len=min_silence_len,
|
| 93 |
+
silence_thresh=silence_thresh
|
| 94 |
+
)
|
| 95 |
+
output = AudioSegment.empty()
|
| 96 |
+
for start, end in nonsilent:
|
| 97 |
+
output += audio[start:end]
|
| 98 |
+
|
| 99 |
+
# Save the silence-removed file
|
| 100 |
+
silence_removed_path = os.path.join(temp_dir, f"silence_removed_{os.path.basename(file)}")
|
| 101 |
+
output.export(silence_removed_path, format="mp3")
|
| 102 |
+
silence_removed_files.append(silence_removed_path)
|
| 103 |
+
processed_files.extend(silence_removed_files)
|
| 104 |
+
else:
|
| 105 |
+
processed_files.extend(temp_files)
|
| 106 |
+
|
| 107 |
+
# Step 2: Transcribe all processed files
|
| 108 |
+
print(f"Loading Whisper model '{model_size}'...")
|
| 109 |
+
model = whisper.load_model(model_size, device="cpu")
|
| 110 |
+
|
| 111 |
+
for file in processed_files:
|
| 112 |
+
print(f"Transcribing: {file}")
|
| 113 |
+
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
|
| 114 |
+
|
| 115 |
+
result = model.transcribe(file, fp16=False, language=language, temperature=0.0)
|
| 116 |
+
|
| 117 |
+
full_text = result["text"]
|
| 118 |
+
segments = ""
|
| 119 |
+
for segment in result["segments"]:
|
| 120 |
+
segments += f"[{segment['start']:.2f} - {segment['end']:.2f}]: {segment['text']}\n"
|
| 121 |
+
|
| 122 |
+
# Store transcript files in temp directory
|
| 123 |
+
txt_path = os.path.join(temp_dir, f"transcript_{os.path.splitext(os.path.basename(file))[0]}.txt")
|
| 124 |
+
with open(txt_path, "w", encoding="utf-8") as f:
|
| 125 |
+
f.write("=== Full Transcription ===\n\n")
|
| 126 |
+
f.write(full_text)
|
| 127 |
+
f.write("\n\n=== Segment-wise Transcription ===\n")
|
| 128 |
+
f.write(segments)
|
| 129 |
+
|
| 130 |
+
all_results.append(full_text)
|
| 131 |
+
all_segments.append(segments)
|
| 132 |
+
all_txt_paths.append(txt_path)
|
| 133 |
+
|
| 134 |
+
# Create combined transcript file in temp directory
|
| 135 |
+
combined_txt_path = os.path.join(temp_dir, "combined_transcripts.txt")
|
| 136 |
+
with open(combined_txt_path, "w", encoding="utf-8") as f:
|
| 137 |
+
f.write("=== Combined Transcriptions ===\n\n")
|
| 138 |
+
for i, (result, segment, path) in enumerate(zip(all_results, all_segments, all_txt_paths)):
|
| 139 |
+
filename = os.path.basename(processed_files[i])
|
| 140 |
+
f.write(f"File: {filename}\n")
|
| 141 |
+
f.write("=== Full Transcription ===\n")
|
| 142 |
+
f.write(result)
|
| 143 |
+
f.write("\n\n=== Segment-wise Transcription ===\n")
|
| 144 |
+
f.write(segment)
|
| 145 |
+
f.write("\n" + "-"*50 + "\n\n")
|
| 146 |
+
|
| 147 |
+
# Format display output
|
| 148 |
+
combined_results = "=== File Transcriptions ===\n\n"
|
| 149 |
+
combined_segments = "=== File Segments ===\n\n"
|
| 150 |
+
for i, (result, segment) in enumerate(zip(all_results, all_segments)):
|
| 151 |
+
filename = os.path.basename(processed_files[i])
|
| 152 |
+
combined_results += f"File: {filename}\n{result}\n\n"
|
| 153 |
+
combined_segments += f"File: {filename}\n{segment}\n\n"
|
| 154 |
+
|
| 155 |
+
# Create ZIP with all processed files and transcripts
|
| 156 |
+
zip_path = f"processed_files_and_transcripts_{int(time.time())}.zip"
|
| 157 |
+
cleanup_files = processed_files.copy()
|
| 158 |
+
|
| 159 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 160 |
+
for file in processed_files:
|
| 161 |
+
if os.path.exists(file):
|
| 162 |
+
zipf.write(file, os.path.basename(file))
|
| 163 |
+
for txt_file in all_txt_paths:
|
| 164 |
+
if os.path.exists(txt_file):
|
| 165 |
+
zipf.write(txt_file)
|
| 166 |
+
if os.path.exists(combined_txt_path):
|
| 167 |
+
zipf.write(combined_txt_path)
|
| 168 |
+
|
| 169 |
+
# Cleanup files after ZIP creation
|
| 170 |
+
for file in cleanup_files:
|
| 171 |
+
if os.path.exists(file):
|
| 172 |
+
os.remove(file)
|
| 173 |
+
for txt_file in all_txt_paths:
|
| 174 |
+
if os.path.exists(txt_file):
|
| 175 |
+
os.remove(txt_file)
|
| 176 |
+
if os.path.exists(combined_txt_path):
|
| 177 |
+
os.remove(combined_txt_path)
|
| 178 |
+
|
| 179 |
+
# Clean up temp directory
|
| 180 |
+
if os.path.exists(temp_dir):
|
| 181 |
+
for file in os.listdir(temp_dir):
|
| 182 |
+
file_path = os.path.join(temp_dir, file)
|
| 183 |
+
if os.path.isfile(file_path):
|
| 184 |
+
os.remove(file_path)
|
| 185 |
+
os.rmdir(temp_dir)
|
| 186 |
+
|
| 187 |
+
return combined_results, combined_segments, zip_path
|
| 188 |
+
|
| 189 |
+
except Exception as inner_e:
|
| 190 |
+
print(f"Error during processing: {inner_e}")
|
| 191 |
+
raise inner_e
|
| 192 |
+
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(f"Error in process_audio: {e}")
|
| 195 |
+
if 'temp_dir' in locals() and os.path.exists(temp_dir):
|
| 196 |
+
try:
|
| 197 |
+
for file in os.listdir(temp_dir):
|
| 198 |
+
file_path = os.path.join(temp_dir, file)
|
| 199 |
+
if os.path.isfile(file_path):
|
| 200 |
+
os.remove(file_path)
|
| 201 |
+
os.rmdir(temp_dir)
|
| 202 |
+
except:
|
| 203 |
+
pass
|
| 204 |
+
return f"Error: {str(e)}", "", None
|
| 205 |
+
|
| 206 |
+
def create_interface():
|
| 207 |
+
with gr.Blocks(title="Interview Audio Processing App") as app:
|
| 208 |
+
gr.Markdown("""
|
| 209 |
+
# Audio Processing App
|
| 210 |
+
Upload audio files (MP3 or M4A) for processing and transcription.\\
|
| 211 |
+
Intended use case: transcription of interviews.
|
| 212 |
+
""")
|
| 213 |
+
with gr.Row():
|
| 214 |
+
with gr.Column():
|
| 215 |
+
audio_input = gr.File(
|
| 216 |
+
label="Upload Audio Files",
|
| 217 |
+
file_count="multiple",
|
| 218 |
+
type="filepath"
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
with gr.Group():
|
| 222 |
+
gr.Markdown("### Silence Removal Settings")
|
| 223 |
+
gr.Markdown(" Default settings are working very well. Silence removal helps to reduce hallucination.")
|
| 224 |
+
remove_silence = gr.Checkbox(
|
| 225 |
+
label="Remove Silence",
|
| 226 |
+
value=False
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
min_silence_len = gr.Slider(
|
| 230 |
+
minimum=100,
|
| 231 |
+
maximum=2000,
|
| 232 |
+
value=500,
|
| 233 |
+
step=100,
|
| 234 |
+
label="Minimum Silence Length (ms)",
|
| 235 |
+
visible=False
|
| 236 |
+
)
|
| 237 |
+
silence_thresh = gr.Slider(
|
| 238 |
+
minimum=-70,
|
| 239 |
+
maximum=-30,
|
| 240 |
+
value=-50,
|
| 241 |
+
step=5,
|
| 242 |
+
label="Silence Threshold (dB)",
|
| 243 |
+
visible=False
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
with gr.Group():
|
| 247 |
+
gr.Markdown("### Chunking Settings")
|
| 248 |
+
gr.Markdown(" Chunking reduces the load on the model. 10min chunks work really good.")
|
| 249 |
+
enable_chunking = gr.Checkbox(
|
| 250 |
+
label="Enable Chunking",
|
| 251 |
+
value=False
|
| 252 |
+
)
|
| 253 |
+
chunk_duration = gr.Slider(
|
| 254 |
+
minimum=60,
|
| 255 |
+
maximum=3600,
|
| 256 |
+
value=600,
|
| 257 |
+
step=60,
|
| 258 |
+
label="Chunk Duration (seconds)",
|
| 259 |
+
visible=False
|
| 260 |
+
)
|
| 261 |
+
ffmpeg_path = gr.Textbox(
|
| 262 |
+
label="FFmpeg Path",
|
| 263 |
+
value="ffmpeg",
|
| 264 |
+
placeholder="Path to ffmpeg executable",
|
| 265 |
+
visible=False
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
with gr.Group():
|
| 269 |
+
gr.Markdown("### Transcription Settings")
|
| 270 |
+
gr.Markdown(" tiny is the fastest, but the worst quality. Large-v3-turbo is the best, but slower.")
|
| 271 |
+
model_size = gr.Dropdown(
|
| 272 |
+
choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3", "turbo", "large-v3-turbo"],
|
| 273 |
+
value="large-v3-turbo",
|
| 274 |
+
label="Whisper Model Size"
|
| 275 |
+
)
|
| 276 |
+
language = gr.Dropdown(
|
| 277 |
+
choices=["de", "en", "fr", "es", "it"],
|
| 278 |
+
value="de",
|
| 279 |
+
label="Language"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
process_btn = gr.Button("Process", variant="primary")
|
| 283 |
+
delete_btn = gr.Button("Delete Everything", variant="stop")
|
| 284 |
+
|
| 285 |
+
with gr.Column():
|
| 286 |
+
full_transcription = gr.Textbox(label="Full Transcription", lines=15)
|
| 287 |
+
segmented_transcription = gr.Textbox(label="Segmented Transcription", lines=15)
|
| 288 |
+
download_output = gr.File(label="Download Processed Files and Transcripts (ZIP)")
|
| 289 |
+
|
| 290 |
+
def update_silence_controls(remove_silence):
|
| 291 |
+
return {
|
| 292 |
+
min_silence_len: gr.update(visible=remove_silence),
|
| 293 |
+
silence_thresh: gr.update(visible=remove_silence),
|
| 294 |
+
full_transcription: gr.update(value=""),
|
| 295 |
+
segmented_transcription: gr.update(value=""),
|
| 296 |
+
download_output: gr.update(value=None)
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
def update_chunking_controls(enable_chunking):
|
| 300 |
+
return {
|
| 301 |
+
chunk_duration: gr.update(visible=enable_chunking),
|
| 302 |
+
ffmpeg_path: gr.update(visible=enable_chunking),
|
| 303 |
+
full_transcription: gr.update(value=""),
|
| 304 |
+
segmented_transcription: gr.update(value=""),
|
| 305 |
+
download_output: gr.update(value=None)
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
remove_silence.change(
|
| 309 |
+
fn=update_silence_controls,
|
| 310 |
+
inputs=[remove_silence],
|
| 311 |
+
outputs=[
|
| 312 |
+
min_silence_len,
|
| 313 |
+
silence_thresh,
|
| 314 |
+
full_transcription,
|
| 315 |
+
segmented_transcription,
|
| 316 |
+
download_output
|
| 317 |
+
]
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
enable_chunking.change(
|
| 321 |
+
fn=update_chunking_controls,
|
| 322 |
+
inputs=[enable_chunking],
|
| 323 |
+
outputs=[
|
| 324 |
+
chunk_duration,
|
| 325 |
+
ffmpeg_path,
|
| 326 |
+
full_transcription,
|
| 327 |
+
segmented_transcription,
|
| 328 |
+
download_output
|
| 329 |
+
]
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
process_btn.click(
|
| 333 |
+
fn=process_audio,
|
| 334 |
+
inputs=[
|
| 335 |
+
audio_input,
|
| 336 |
+
remove_silence,
|
| 337 |
+
min_silence_len,
|
| 338 |
+
silence_thresh,
|
| 339 |
+
enable_chunking,
|
| 340 |
+
chunk_duration,
|
| 341 |
+
ffmpeg_path,
|
| 342 |
+
model_size,
|
| 343 |
+
language,
|
| 344 |
+
],
|
| 345 |
+
outputs=[
|
| 346 |
+
full_transcription,
|
| 347 |
+
segmented_transcription,
|
| 348 |
+
download_output,
|
| 349 |
+
]
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
# Add cleanup function
|
| 353 |
+
def cleanup_files():
|
| 354 |
+
try:
|
| 355 |
+
# Clean up temp directories
|
| 356 |
+
temp_dirs = [d for d in os.listdir('.') if d.startswith('temp_processing')]
|
| 357 |
+
for temp_dir in temp_dirs:
|
| 358 |
+
if os.path.exists(temp_dir):
|
| 359 |
+
for file in os.listdir(temp_dir):
|
| 360 |
+
file_path = os.path.join(temp_dir, file)
|
| 361 |
+
if os.path.isfile(file_path):
|
| 362 |
+
os.remove(file_path)
|
| 363 |
+
os.rmdir(temp_dir)
|
| 364 |
+
|
| 365 |
+
# Clean up ZIP files
|
| 366 |
+
zip_files = [f for f in os.listdir('.') if f.startswith('processed_files_and_transcripts_')]
|
| 367 |
+
for zip_file in zip_files:
|
| 368 |
+
if os.path.exists(zip_file):
|
| 369 |
+
os.remove(zip_file)
|
| 370 |
+
|
| 371 |
+
# Clean up transcript files
|
| 372 |
+
transcript_files = [f for f in os.listdir('.') if f.startswith('transcript_')]
|
| 373 |
+
for transcript_file in transcript_files:
|
| 374 |
+
if os.path.exists(transcript_file):
|
| 375 |
+
os.remove(transcript_file)
|
| 376 |
+
|
| 377 |
+
# Return updates for all output fields
|
| 378 |
+
return {
|
| 379 |
+
full_transcription: gr.update(value="All temporary files have been deleted."),
|
| 380 |
+
segmented_transcription: gr.update(value=""),
|
| 381 |
+
download_output: gr.update(value=None)
|
| 382 |
+
}
|
| 383 |
+
except Exception as e:
|
| 384 |
+
return {
|
| 385 |
+
full_transcription: gr.update(value=f"Error during cleanup: {str(e)}"),
|
| 386 |
+
segmented_transcription: gr.update(value=""),
|
| 387 |
+
download_output: gr.update(value=None)
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
# Update the delete button click handler
|
| 391 |
+
delete_btn.click(
|
| 392 |
+
fn=cleanup_files,
|
| 393 |
+
inputs=[],
|
| 394 |
+
outputs=[
|
| 395 |
+
full_transcription,
|
| 396 |
+
segmented_transcription,
|
| 397 |
+
download_output
|
| 398 |
+
]
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
return app
|
| 402 |
+
|
| 403 |
+
if __name__ == "__main__":
|
| 404 |
+
app = create_interface()
|
| 405 |
+
app.launch(share=False)
|