File size: 13,461 Bytes
7fbcea5
e15c8b9
7fbcea5
 
4c36cd4
 
 
 
 
 
 
 
e996282
 
4c36cd4
 
 
 
 
 
 
 
 
 
7fbcea5
 
 
 
 
 
4c36cd4
e996282
 
 
 
03de2e8
 
e996282
03de2e8
5ed186b
4c36cd4
 
03de2e8
5ed186b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03de2e8
7fbcea5
5ed186b
 
7fbcea5
 
 
 
 
a776895
 
 
b7e15be
5ed186b
 
a776895
 
 
 
 
5ed186b
 
 
 
 
b7e15be
5ed186b
 
 
 
 
a14da38
 
5ed186b
a776895
 
4c36cd4
 
7fbcea5
 
 
4c36cd4
e15c8b9
4c36cd4
 
 
 
 
 
e15c8b9
 
 
 
4c36cd4
e15c8b9
7fbcea5
69d7ac6
4c36cd4
 
 
 
 
 
 
 
 
7fbcea5
 
4c36cd4
 
7fbcea5
 
 
 
 
 
 
 
 
 
 
 
 
 
4c36cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fbcea5
 
 
 
 
7cfb21e
 
e996282
7fbcea5
 
 
 
 
 
577cb80
5ed186b
 
03de2e8
5ed186b
 
 
82fe24c
 
 
e996282
00e4b2e
 
 
b7e15be
 
69d7ac6
e15c8b9
 
 
 
 
 
00e4b2e
b7e15be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fbcea5
e15c8b9
 
 
 
 
 
82fe24c
b7e15be
 
 
 
82fe24c
00e4b2e
 
5ed186b
82fe24c
5ed186b
82fe24c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a91b925
 
4c36cd4
7fbcea5
 
 
 
8890bde
7fbcea5
 
 
8890bde
00e4b2e
 
8457196
00e4b2e
 
 
8457196
 
a91b925
7fbcea5
 
 
 
4c36cd4
 
7fbcea5
 
 
 
 
4c36cd4
 
7fbcea5
b7e15be
 
 
7fbcea5
e996282
 
 
 
 
 
 
 
 
 
7fbcea5
 
b7e15be
 
 
 
 
7fbcea5
4c36cd4
7fbcea5
 
 
4c36cd4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import streamlit as st
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
import nltk
import string
from streamlit.components.v1 import html
from sentence_transformers.cross_encoder import CrossEncoder as CE
import numpy as np
from typing import List, Tuple
import torch

SCITE_API_KEY = st.secrets["SCITE_API_KEY"]

class CrossEncoder:
    def __init__(self, model_path: str, **kwargs):
        self.model = CE(model_path, **kwargs)

    def predict(self, sentences: List[Tuple[str,str]], batch_size: int = 32, show_progress_bar: bool = True) -> List[float]:
        return self.model.predict(
            sentences=sentences,
            batch_size=batch_size,
            show_progress_bar=show_progress_bar)


def remove_html(x):
    soup = BeautifulSoup(x, 'html.parser')
    text = soup.get_text()
    return text


# 4 searches: strict y/n, supported y/n
# deduplicate
# search per query

# options are abstract search
# all search


def search(term, limit=10, clean=True, strict=True, all_mode=True, abstracts=True, abstract_only=False):
    term = clean_query(term, clean=clean, strict=strict)
    # heuristic, 2 searches strict and not? and then merge?
    # https://api.scite.ai/search?mode=all&term=unit%20testing%20software&limit=10&date_from=2000&date_to=2022&offset=0&supporting_from=1&contrasting_from=0&contrasting_to=0&user_slug=domenic-rosati-keW5&compute_aggregations=true
    contexts, docs = [], []
    if not abstract_only:
        mode = 'all'
        if not all_mode:
            mode = 'citations'
        search = f"https://api.scite.ai/search?mode={mode}&term={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false"
        req = requests.get(
            search,
            headers={
                'Authorization': f'Bearer {SCITE_API_KEY}'
            }
        )
        try:
            req.json()
        except:
            pass

        contexts += [remove_html('\n'.join([cite['snippet'] for cite in doc['citations']])) for doc in req.json()['hits']]
        docs += [(doc['doi'], doc['citations'], doc['title'], doc['abstract'] or '')
            for doc in req.json()['hits']]

    if abstracts or abstract_only:
        search = f"https://api.scite.ai/search?mode=papers&abstract={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false"
        req = requests.get(
            search,
            headers={
                'Authorization': f'Bearer {SCITE_API_KEY}'
            }
        )
        try:
            req.json()
            contexts += [remove_html(doc['abstract'] or '') for doc in req.json()['hits']]
            docs += [(doc['doi'], doc['citations'], doc['title'], doc['abstract'] or '')
                        for doc in req.json()['hits']]
        except:
            pass


    return (
        contexts,
        docs
    )


def find_source(text, docs):
    for doc in docs:
        for snippet in doc[1]:
            if text in remove_html(snippet.get('snippet', '')):
                new_text = text
                for sent in nltk.sent_tokenize(remove_html(snippet.get('snippet', ''))):
                    if text in sent:
                        new_text = sent
                return {
                    'citation_statement': snippet['snippet'].replace('<strong class="highlight">', '').replace('</strong>', ''),
                    'text': new_text,
                    'from': snippet['source'],
                    'supporting': snippet['target'],
                    'source_title': remove_html(doc[2]),
                    'source_link': f"https://scite.ai/reports/{doc[0]}"
                }
        if text in remove_html(doc[3]):
            new_text = text
            for sent in nltk.sent_tokenize(remove_html(doc[3])):
                if text in sent:
                    new_text = sent
            return {
                    'citation_statement': "ABSTRACT: " + remove_html(doc[3]).replace('<strong class="highlight">', '').replace('</strong>', ''),
                    'text': new_text,
                    'from': doc[0],
                    'supporting': doc[0],
                    'source_title': "ABSTRACT of " + remove_html(doc[2]),
                    'source_link': f"https://scite.ai/reports/{doc[0]}"
                }
    return None


@st.experimental_singleton
def init_models():
    nltk.download('stopwords')
    from nltk.corpus import stopwords
    stop = set(stopwords.words('english') + list(string.punctuation))
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    question_answerer = pipeline(
        "question-answering", model='sultan/BioM-ELECTRA-Large-SQuAD2-BioASQ8B',
        device=device
    )
    reranker = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2', device=device)
    # queryexp_tokenizer = AutoTokenizer.from_pretrained("doc2query/all-with_prefix-t5-base-v1")
    # queryexp_model = AutoModelWithLMHead.from_pretrained("doc2query/all-with_prefix-t5-base-v1")
    return question_answerer, reranker, stop, device # uqeryexp_model, queryexp_tokenizer

qa_model, reranker, stop, device = init_models() # queryexp_model, queryexp_tokenizer


def clean_query(query, strict=True, clean=True):
    operator = ' '
    if strict:
        operator = ' AND '
    query = operator.join(
        [i for i in query.lower().split(' ') if clean and i not in stop])
    if clean:
        query = query.translate(str.maketrans('', '', string.punctuation))
    return query


def card(title, context, score, link, supporting):
    st.markdown(f"""
    <div class="container-fluid">
        <div class="row align-items-start">
             <div  class="col-md-12 col-sm-12">
                 <br>
                 <span>
                     {context}
                     [<b>Score: </b>{score}]
                 </span>
                 <br>
                 <b>From <a href="{link}">{title}</a></b>
             </div>
        </div>
     </div>
        """, unsafe_allow_html=True)
    html(f"""
    <div
                    class="scite-badge"
                    data-doi="{supporting}"
                    data-layout="horizontal"
                    data-show-zero="false"
                    data-show-labels="false"
                    data-tally-show="true"
                />
    <script
    async
    type="application/javascript"
    src="https://cdn.scite.ai/badge/scite-badge-latest.min.js">
  </script>
  """, width=None, height=42, scrolling=False)


st.title("Scientific Question Answering with Citations")

st.write("""
Ask a scientific question and get an answer drawn from [scite.ai](https://scite.ai) corpus of over 1.1bn citation statements.
Answers are linked to source documents containing citations where users can explore further evidence from scientific literature for the answer.

For example try: Do tanning beds cause cancer?
""")

st.markdown("""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
""", unsafe_allow_html=True)

with st.expander("Settings (strictness, context limit, top hits)"):
    support_all = st.radio(
        "Use abstracts and titles as a ranking signal (if the words are matched in the abstract then the document is more relevant)?",
        ('yes', 'no'))
    support_abstracts = st.radio(
        "Use abstracts as a source document?",
        ('yes', 'no', 'abstract only'))
    strict_lenient_mix = st.radio(
        "Type of strict+lenient combination: Fallback or Mix? If fallback, strict is run first then if the results are less than context_lim we also search lenient. Mix will search them both and let reranking sort em out",
        ('fallback', 'mix'))
    confidence_threshold = st.slider('Confidence threshold for answering questions? This number represents how confident the model should be in the answers it gives. The number is out of 100%', 0, 100, 1)
    use_reranking = st.radio(
        "Use Reranking? Reranking will rerank the top hits using semantic similarity of document and query.",
        ('yes', 'no'))
    top_hits_limit = st.slider('Top hits? How many documents to use for reranking. Larger is slower but higher quality', 10, 300, 10)
    context_lim = st.slider('Context limit? How many documents to use for answering from. Larger is slower but higher quality', 10, 300, 5)

# def paraphrase(text, max_length=128):
#     input_ids = queryexp_tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
#     generated_ids = queryexp_model.generate(input_ids=input_ids, num_return_sequences=suggested_queries or 5, num_beams=suggested_queries or 5, max_length=max_length)
#     queries = set([queryexp_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids])
#     preds = '\n * '.join(queries)
#     return preds


def group_results_by_context(results):
    result_groups = {}
    for result in results:
        if result['context'] not in result_groups:
            result_groups[result['context']] = result
            result_groups[result['context']]['texts'] = []

        result_groups[result['context']]['texts'].append(
            result['answer']
        )
        if result['score'] > result_groups[result['context']]['score']:
            result_groups[result['context']]['score'] = result['score']
    return list(result_groups.values())


def run_query(query):
#     if use_query_exp == 'yes':
#         query_exp = paraphrase(f"question2question: {query}")
#         st.markdown(f"""
# If you are not getting good results try one of:
# * {query_exp}
# """)

    # address period in highlitht avoidability. Risk factors
    # address poor tokenization Deletions involving chromosome region 4p16.3 cause WolfHirschhorn syndrome (WHS, OMIM 194190) [Battaglia et al, 2001].
    # address highlight html

    # could also try fallback if there are no good answers by score...
    limit = top_hits_limit or 100
    context_limit = context_lim or 10
    contexts_strict, orig_docs_strict = search(query, limit=limit, strict=True, all_mode=support_all == 'yes', abstracts= support_abstracts == 'yes', abstract_only=support_abstracts == 'abstract only')
    if strict_lenient_mix == 'fallback' and len(contexts_strict) < context_limit:
        contexts_lenient, orig_docs_lenient = search(query, limit=limit, strict=False, all_mode=support_all == 'yes',  abstracts= support_abstracts == 'yes', abstract_only= support_abstracts == 'abstract only')
        contexts = list(
            set(contexts_strict + contexts_lenient)
        )
        orig_docs = orig_docs_strict + orig_docs_lenient
    elif strict_lenient_mix == 'mix':
        contexts_lenient, orig_docs_lenient = search(query, limit=limit, strict=False)
        contexts = list(
            set(contexts_strict + contexts_lenient)
        )
        orig_docs = orig_docs_strict + orig_docs_lenient
    else:
        contexts = list(
            set(contexts_strict)
        )
        orig_docs = orig_docs_strict


    if len(contexts) == 0 or not ''.join(contexts).strip():
        return st.markdown("""
        <div class="container-fluid">
        <div class="row align-items-start">
             <div  class="col-md-12 col-sm-12">
            Sorry... no results for that question! Try another...
         </div>
        </div>
     </div>
        """, unsafe_allow_html=True)
    if use_reranking == 'yes':
        sentence_pairs = [[query, context] for context in contexts]
        scores = reranker.predict(sentence_pairs, batch_size=len(sentence_pairs), show_progress_bar=False)
        hits = {contexts[idx]: scores[idx] for idx in range(len(scores))}
        sorted_contexts = [k for k,v in sorted(hits.items(), key=lambda x: x[0], reverse=True)]
        context = '\n'.join(sorted_contexts[:context_limit])
    else:
        context = '\n'.join(contexts[:context_limit])

    results = []
    model_results = qa_model(question=query, context=context, top_k=10)
    for result in model_results:
        support = find_source(result['answer'], orig_docs)
        if not support:
            continue
        results.append({
            "answer": support['text'],
            "title": support['source_title'],
            "link": support['source_link'],
            "context": support['citation_statement'],
            "score": result['score'],
            "doi": support["supporting"]
        })

    grouped_results = group_results_by_context(results)
    sorted_result = sorted(grouped_results, key=lambda x: x['score'], reverse=True)

    if confidence_threshold == 0:
        threshold = 0
    else:
        threshold = (confidence_threshold or 10) / 100

    sorted_result = filter(
        lambda x: x['score'] > threshold,
        sorted_result
    )

    for r in sorted_result:
        answer = r["answer"]
        ctx = remove_html(r["context"])
        for answer in r['texts']:
            ctx = ctx.replace(answer, f"<mark>{answer}</mark>")
        # .replace( '<cite', '<a').replace('</cite', '</a').replace('data-doi="', 'href="https://scite.ai/reports/')
        title = r.get("title", '')
        score = round(r["score"], 4)
        card(title, ctx, score, r['link'], r['doi'])

query = st.text_input("Ask scientific literature a question", "")
if query != "":
    with st.spinner('Loading...'):
        run_query(query)