import cv2 import grpc import tensorflow as tf import numpy as np from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc def style_transfer_serving(stub, content, style, resize=None): content = np.array(content, dtype=np.float32) style = np.array(style, dtype=np.float32) if resize: content = cv2.resize(content, (512, 512)) style = cv2.resize(style, (512, 512)) image_proto = tf.make_tensor_proto(content[np.newaxis, ...] / 255.) style_proto = tf.make_tensor_proto(style[np.newaxis, ...] / 255.) request = predict_pb2.PredictRequest() request.model_spec.name = 'style' request.model_spec.signature_name = 'serving_default' request.inputs['placeholder'].CopyFrom(image_proto) request.inputs['placeholder_1'].CopyFrom(style_proto) resp = stub.Predict(request) stylized_image = tf.make_ndarray(resp.outputs['output_0'])[0] return stylized_image if __name__ == "__main__": options = [ ('grpc.max_send_message_length', 200 * 1024 * 1024), ('grpc.max_receive_message_length', 200 * 1024 * 1024) ] channel = grpc.insecure_channel('localhost:8500', options=options) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) request = predict_pb2.PredictRequest() file = tf.io.read_file('/home/albert/Downloads/pebbles.jpg') style = tf.io.decode_image(file) file = tf.io.read_file('/home/albert/Downloads/sam_and_nyx/sam_faces/sam_kitchen.jpg') content = tf.io.decode_image(file) style_transfer_serving(stub, content, style)