import os import tensorflow as tf os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' import matplotlib.pyplot as plt import numpy as np import time import functools import PIL def tensor_to_image(tensor): tensor *= 255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor) > 3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) content_path = tf.keras.utils.get_file('YellowLabradorLooking_new.jpg', 'https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg') style_path = tf.keras.utils.get_file('kandinsky5.jpg', 'https://storage.googleapis.com/download.tensorflow.org/example_images/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg') def load_img(path_to_img): max_dim = 512 img = tf.io.read_file(path_to_img) img = tf.image.decode_image(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) shape = tf.cast(tf.shape(img)[:-1], tf.float32) long_dim = max(shape) scale = max_dim / long_dim new_shape = tf.cast(shape * scale, tf.int32) img = tf.image.resize(img, new_shape) img = img[tf.newaxis, ...] return img def imshow(image, title=None): if np.ndim(image) > 3: image = tf.squeeze(image, axis=0) plt.imshow(image) if title: plt.title(title) content_image = load_img(content_path) style_image = load_img(style_path) plt.subplot(1, 2, 1) imshow(content_image, 'Content Image') plt.subplot(1, 2, 2) imshow(style_image, 'Style Image') import tensorflow_hub as hub hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] tensor_to_image(stylized_image) print(type(hub_model)) tf.saved_model.save(hub_model, 'style')