Spaces:
Runtime error
Runtime error
Commit
·
df7fd14
0
Parent(s):
Serving and model hub files.
Browse files
Makefile
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
start: style
|
2 |
+
docker run -p 8500:8500 --mount type=bind,source=C:/Users/doge/github/neural-style/style,target=/models/style -e MODEL_NAME=style -t tensorflow/serving
|
client.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import grpc
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc
|
5 |
+
|
6 |
+
if __name__ == "__main__":
|
7 |
+
options = [('grpc.max_message_length', 100 * 1024 * 1024)]
|
8 |
+
channel = grpc.insecure_channel('localhost:8500', options=options)
|
9 |
+
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
|
10 |
+
request = predict_pb2.PredictRequest()
|
11 |
+
|
12 |
+
file = tf.io.read_file('C:\\Users\\doge\\Downloads\\sam.jpg')
|
13 |
+
image = tf.io.decode_image(file)
|
14 |
+
|
15 |
+
request.model_spec.name = 'style'
|
16 |
+
request.model_spec.signature_name = 'serving_default'
|
17 |
+
image_proto = tf.make_tensor_proto(np.array(image, dtype=np.float32)[np.newaxis, ...])
|
18 |
+
request.inputs['placeholder'].CopyFrom(image_proto)
|
19 |
+
request.inputs['placeholder_1'].CopyFrom(image_proto)
|
20 |
+
resp = stub.Predict(request)
|
21 |
+
print(resp)
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
main.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tensorflow as tf
|
3 |
+
|
4 |
+
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
import time
|
8 |
+
import functools
|
9 |
+
import PIL
|
10 |
+
|
11 |
+
|
12 |
+
def tensor_to_image(tensor):
|
13 |
+
tensor *= 255
|
14 |
+
tensor = np.array(tensor, dtype=np.uint8)
|
15 |
+
if np.ndim(tensor) > 3:
|
16 |
+
assert tensor.shape[0] == 1
|
17 |
+
tensor = tensor[0]
|
18 |
+
return PIL.Image.fromarray(tensor)
|
19 |
+
|
20 |
+
|
21 |
+
content_path = tf.keras.utils.get_file('YellowLabradorLooking_new.jpg',
|
22 |
+
'https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg')
|
23 |
+
style_path = tf.keras.utils.get_file('kandinsky5.jpg',
|
24 |
+
'https://storage.googleapis.com/download.tensorflow.org/example_images/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg')
|
25 |
+
|
26 |
+
def load_img(path_to_img):
|
27 |
+
max_dim = 512
|
28 |
+
img = tf.io.read_file(path_to_img)
|
29 |
+
img = tf.image.decode_image(img, channels=3)
|
30 |
+
img = tf.image.convert_image_dtype(img ,tf.float32)
|
31 |
+
|
32 |
+
shape = tf.cast(tf.shape(img)[:-1], tf.float32)
|
33 |
+
long_dim = max(shape)
|
34 |
+
scale = max_dim / long_dim
|
35 |
+
|
36 |
+
new_shape = tf.cast(shape * scale, tf.int32)
|
37 |
+
|
38 |
+
img = tf.image.resize(img, new_shape)
|
39 |
+
img = img[tf.newaxis, ...]
|
40 |
+
return img
|
41 |
+
|
42 |
+
def imshow(image, title=None):
|
43 |
+
if np.ndim(image) > 3:
|
44 |
+
image = tf.squeeze(image, axis=0)
|
45 |
+
|
46 |
+
plt.imshow(image)
|
47 |
+
if title:
|
48 |
+
plt.title(title)
|
49 |
+
|
50 |
+
content_image = load_img(content_path)
|
51 |
+
style_image = load_img(style_path)
|
52 |
+
|
53 |
+
plt.subplot(1, 2, 1)
|
54 |
+
imshow(content_image, 'Content Image')
|
55 |
+
plt.subplot(1, 2, 2)
|
56 |
+
imshow(style_image, 'Style Image')
|
57 |
+
|
58 |
+
import tensorflow_hub as hub
|
59 |
+
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
|
60 |
+
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
|
61 |
+
tensor_to_image(stylized_image)
|
62 |
+
print(type(hub_model))
|
63 |
+
|
64 |
+
|
65 |
+
tf.saved_model.save(hub_model, 'style')
|