dogeplusplus commited on
Commit
df7fd14
·
0 Parent(s):

Serving and model hub files.

Browse files
Files changed (3) hide show
  1. Makefile +2 -0
  2. client.py +25 -0
  3. main.py +65 -0
Makefile ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ start: style
2
+ docker run -p 8500:8500 --mount type=bind,source=C:/Users/doge/github/neural-style/style,target=/models/style -e MODEL_NAME=style -t tensorflow/serving
client.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import grpc
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc
5
+
6
+ if __name__ == "__main__":
7
+ options = [('grpc.max_message_length', 100 * 1024 * 1024)]
8
+ channel = grpc.insecure_channel('localhost:8500', options=options)
9
+ stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
10
+ request = predict_pb2.PredictRequest()
11
+
12
+ file = tf.io.read_file('C:\\Users\\doge\\Downloads\\sam.jpg')
13
+ image = tf.io.decode_image(file)
14
+
15
+ request.model_spec.name = 'style'
16
+ request.model_spec.signature_name = 'serving_default'
17
+ image_proto = tf.make_tensor_proto(np.array(image, dtype=np.float32)[np.newaxis, ...])
18
+ request.inputs['placeholder'].CopyFrom(image_proto)
19
+ request.inputs['placeholder_1'].CopyFrom(image_proto)
20
+ resp = stub.Predict(request)
21
+ print(resp)
22
+
23
+
24
+
25
+
main.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tensorflow as tf
3
+
4
+ os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
5
+ import matplotlib.pyplot as plt
6
+ import numpy as np
7
+ import time
8
+ import functools
9
+ import PIL
10
+
11
+
12
+ def tensor_to_image(tensor):
13
+ tensor *= 255
14
+ tensor = np.array(tensor, dtype=np.uint8)
15
+ if np.ndim(tensor) > 3:
16
+ assert tensor.shape[0] == 1
17
+ tensor = tensor[0]
18
+ return PIL.Image.fromarray(tensor)
19
+
20
+
21
+ content_path = tf.keras.utils.get_file('YellowLabradorLooking_new.jpg',
22
+ 'https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg')
23
+ style_path = tf.keras.utils.get_file('kandinsky5.jpg',
24
+ 'https://storage.googleapis.com/download.tensorflow.org/example_images/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg')
25
+
26
+ def load_img(path_to_img):
27
+ max_dim = 512
28
+ img = tf.io.read_file(path_to_img)
29
+ img = tf.image.decode_image(img, channels=3)
30
+ img = tf.image.convert_image_dtype(img ,tf.float32)
31
+
32
+ shape = tf.cast(tf.shape(img)[:-1], tf.float32)
33
+ long_dim = max(shape)
34
+ scale = max_dim / long_dim
35
+
36
+ new_shape = tf.cast(shape * scale, tf.int32)
37
+
38
+ img = tf.image.resize(img, new_shape)
39
+ img = img[tf.newaxis, ...]
40
+ return img
41
+
42
+ def imshow(image, title=None):
43
+ if np.ndim(image) > 3:
44
+ image = tf.squeeze(image, axis=0)
45
+
46
+ plt.imshow(image)
47
+ if title:
48
+ plt.title(title)
49
+
50
+ content_image = load_img(content_path)
51
+ style_image = load_img(style_path)
52
+
53
+ plt.subplot(1, 2, 1)
54
+ imshow(content_image, 'Content Image')
55
+ plt.subplot(1, 2, 2)
56
+ imshow(style_image, 'Style Image')
57
+
58
+ import tensorflow_hub as hub
59
+ hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
60
+ stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
61
+ tensor_to_image(stylized_image)
62
+ print(type(hub_model))
63
+
64
+
65
+ tf.saved_model.save(hub_model, 'style')