Spaces:
Runtime error
Runtime error
import os | |
import tensorflow as tf | |
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import time | |
import functools | |
import PIL | |
def tensor_to_image(tensor): | |
tensor *= 255 | |
tensor = np.array(tensor, dtype=np.uint8) | |
if np.ndim(tensor) > 3: | |
assert tensor.shape[0] == 1 | |
tensor = tensor[0] | |
return PIL.Image.fromarray(tensor) | |
content_path = tf.keras.utils.get_file('YellowLabradorLooking_new.jpg', | |
'https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg') | |
style_path = tf.keras.utils.get_file('kandinsky5.jpg', | |
'https://storage.googleapis.com/download.tensorflow.org/example_images/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg') | |
def load_img(path_to_img): | |
max_dim = 512 | |
img = tf.io.read_file(path_to_img) | |
img = tf.image.decode_image(img, channels=3) | |
img = tf.image.convert_image_dtype(img, tf.float32) | |
shape = tf.cast(tf.shape(img)[:-1], tf.float32) | |
long_dim = max(shape) | |
scale = max_dim / long_dim | |
new_shape = tf.cast(shape * scale, tf.int32) | |
img = tf.image.resize(img, new_shape) | |
img = img[tf.newaxis, ...] | |
return img | |
def imshow(image, title=None): | |
if np.ndim(image) > 3: | |
image = tf.squeeze(image, axis=0) | |
plt.imshow(image) | |
if title: | |
plt.title(title) | |
content_image = load_img(content_path) | |
style_image = load_img(style_path) | |
plt.subplot(1, 2, 1) | |
imshow(content_image, 'Content Image') | |
plt.subplot(1, 2, 2) | |
imshow(style_image, 'Style Image') | |
import tensorflow_hub as hub | |
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') | |
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] | |
tensor_to_image(stylized_image) | |
print(type(hub_model)) | |
tf.saved_model.save(hub_model, 'style') | |