Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import grpc | |
import tensorflow as tf | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc | |
import time | |
if __name__ == "__main__": | |
options = [ | |
('grpc.max_send_message_length', 200 * 1024 * 1024), | |
('grpc.max_receive_message_length', 200 * 1024 * 1024) | |
] | |
channel = grpc.insecure_channel('localhost:8500', options=options) | |
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | |
request = predict_pb2.PredictRequest() | |
file = tf.io.read_file('/home/albert/Downloads/pebbles.jpg') | |
style = tf.io.decode_image(file) | |
style_image = cv2.resize(np.array(style, dtype=np.float32), (64, 64))[np.newaxis, ...] / 255. | |
style_proto = tf.make_tensor_proto(np.array(style, dtype=np.float32)[np.newaxis, ...] / 255.) | |
def style_transfer(stub, image): | |
request.model_spec.name = 'style' | |
request.model_spec.signature_name = 'serving_default' | |
image = cv2.resize(np.array(image, dtype=np.float32), (512, 512)) | |
image_proto = tf.make_tensor_proto(image[np.newaxis, ...] / 255.) | |
request.inputs['placeholder'].CopyFrom(image_proto) | |
request.inputs['placeholder_1'].CopyFrom(style_proto) | |
resp = stub.Predict(request) | |
stylized_image = tf.make_ndarray(resp.outputs['output_0'])[0] | |
return stylized_image | |
video = cv2.VideoCapture('/home/albert/Downloads/cat_yelling.mp4') | |
while video.isOpened(): | |
ret, frame = video.read() | |
styled_image = style_transfer(stub, frame) | |
cv2.imshow('cheese', styled_image) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
video.release() | |
cv2.destroyAllWindows() | |