neural-style / client.py
dogeplusplus's picture
Streamlit web app with example images.
daf7bc7
raw
history blame
1.62 kB
import cv2
import grpc
import tensorflow as tf
import numpy as np
from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc
def style_transfer_serving(stub, content, style, resize=None):
content = np.array(content, dtype=np.float32)
style = np.array(style, dtype=np.float32)
if resize:
content = cv2.resize(content, (512, 512))
style = cv2.resize(style, (512, 512))
image_proto = tf.make_tensor_proto(content[np.newaxis, ...] / 255.)
style_proto = tf.make_tensor_proto(style[np.newaxis, ...] / 255.)
request = predict_pb2.PredictRequest()
request.model_spec.name = 'style'
request.model_spec.signature_name = 'serving_default'
request.inputs['placeholder'].CopyFrom(image_proto)
request.inputs['placeholder_1'].CopyFrom(style_proto)
resp = stub.Predict(request)
stylized_image = tf.make_ndarray(resp.outputs['output_0'])[0]
return stylized_image
if __name__ == "__main__":
options = [
('grpc.max_send_message_length', 200 * 1024 * 1024),
('grpc.max_receive_message_length', 200 * 1024 * 1024)
]
channel = grpc.insecure_channel('localhost:8500', options=options)
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
request = predict_pb2.PredictRequest()
file = tf.io.read_file('/home/albert/Downloads/pebbles.jpg')
style = tf.io.decode_image(file)
file = tf.io.read_file('/home/albert/Downloads/sam_and_nyx/sam_faces/sam_kitchen.jpg')
content = tf.io.decode_image(file)
style_transfer_serving(stub, content, style)