File size: 11,011 Bytes
5004324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch
from torch import nn
from einops import rearrange
from .nn import Identity, Attention, SinusoidalPosEmb, UpDownResolution
from .utils import exist, set_default_item, set_default_layer
import torch.nn.functional as F


class Block(nn.Module):

    def __init__(self, in_channels, out_channels, time_embed_dim=None, groups=32, activation=None, up_resolution=None, dropout=None):
        super().__init__()
        self.group_norm = nn.GroupNorm(groups, in_channels)
        self.activation = set_default_layer(
             exist(activation),
             nn.SiLU
         )
        self.change_resolution = set_default_layer(
             exist(up_resolution),
             UpDownResolution, (in_channels, up_resolution)
         )
        self.dropout = set_default_layer(
             exist(dropout),
             nn.Dropout, (), {'p': 0.1}
         )
        self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)

    def forward(self, x, scale_shift=None):
        x = self.group_norm(x)
        if exist(scale_shift):
            scale, shift = scale_shift
            x = x * (scale + 1) + shift
        x = self.activation(x)
        x = self.dropout(x)
        x = self.change_resolution(x)
        x = self.projection(x)
        return x


class ResNetBlock(nn.Module):

    def __init__(self, in_channels, out_channels, time_embed_dim=None, groups=32, up_resolution=None):
        super().__init__()
        self.time_mlp = set_default_item(
            exist(time_embed_dim),
            nn.Sequential(
                nn.SiLU(),
                nn.Linear(time_embed_dim, 2 * out_channels)
            )
        )
        self.in_block = Block(in_channels, out_channels, time_embed_dim, groups, up_resolution=up_resolution)
        self.out_block = Block(out_channels, out_channels, time_embed_dim, groups, activation=True, up_resolution=None, dropout=True)

        self.change_resolution = set_default_layer(
            exist(up_resolution),
            UpDownResolution, (in_channels, up_resolution)
        )
        self.res_block = set_default_layer(
            in_channels != out_channels or exist(up_resolution),
            nn.Conv2d, (in_channels, out_channels), {'kernel_size': 1}
        )

    def forward(self, x, time_embed=None):
        scale_shift = None
        if exist(time_embed) and exist(self.time_mlp):
            time_embed = self.time_mlp(time_embed)
            time_embed = rearrange(time_embed, 'b c -> b c 1 1')
            scale_shift = time_embed.chunk(2, dim=1)
        out = self.in_block(x)
        out = self.out_block(out, scale_shift=scale_shift)
        x = self.change_resolution(x)
        out = out + self.res_block(x)
        return out


class AttentionBlock(nn.Module):

    def __init__(
            self, dim, context_dim=None, groups=32, num_heads=8, num_conditions=1, feed_forward_mult=2
    ):
        super().__init__()
        self.in_norm = nn.GroupNorm(groups, dim)
        self.attention = Attention(
            dim, context_dim or dim, num_heads, num_conditions=num_conditions
        )

        hidden_dim = feed_forward_mult * dim
        self.out_norm = nn.GroupNorm(groups, dim)
        self.feed_forward = nn.Sequential(
            nn.Conv2d(dim, hidden_dim, kernel_size=1, bias=False),
            nn.SiLU(),
            nn.Conv2d(hidden_dim, dim, kernel_size=1, bias=False),
        )

    def forward(self, x, context=None, context_mask=None, context_idx=None):
        width = x.shape[-1]
        out = self.in_norm(x)
        out = rearrange(out, 'b c h w -> b (h w) c')
        context = set_default_item(exist(context), context, out)
        out = self.attention(out, context, context_mask, context_idx)
        out = rearrange(out, 'b (h w) c -> b c h w', w=width)
        x = x + out

        out = self.out_norm(x)
        out = self.feed_forward(out)
        x = x + out
        return x

    
class DownSampleBlock(nn.Module):

    def __init__(
            self, in_channels, out_channels, time_embed_dim,
            num_resnet_blocks=3, groups=32, down_sample=True, context_dim=None, self_attention=True, num_conditions=1):
        super().__init__()
        up_resolutions = [set_default_item(down_sample, False)] + [None] * (num_resnet_blocks - 1)
        hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_resnet_blocks - 1)
        self.resnet_attn_blocks = nn.ModuleList([
            nn.ModuleList([
                ResNetBlock(in_channel, out_channel, time_embed_dim, groups, up_resolution),
                set_default_layer(
                    exist(context_dim),
                    AttentionBlock, (out_channel, context_dim), {'num_conditions': num_conditions, 'groups': groups},
                    layer_2=Identity
                )
            ]) for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions)
        ])

        self.self_attention_block = set_default_layer(
            self_attention,
            AttentionBlock, (out_channels,), {'feed_forward_mult': 4, 'groups': groups},
            layer_2=Identity
        )

    def forward(self, x, time_embed, context=None, context_mask=None, context_idx=None):
        for resnet_block, attention in self.resnet_attn_blocks:
            x = resnet_block(x, time_embed)
            x = attention(x, context, context_mask, context_idx)
        x = self.self_attention_block(x)
        return x


class UpSampleBlock(nn.Module):

    def __init__(
            self, in_channels, cat_dim, out_channels, time_embed_dim,
            num_resnet_blocks=3, groups=32, up_sample=True, context_dim=None, self_attention=True, num_conditions=1):
        super().__init__()
        up_resolutions = [None] * (num_resnet_blocks - 1) + [set_default_item(up_sample, True)]
        hidden_channels = [(in_channels + cat_dim, in_channels)] + [(in_channels, in_channels)] * (num_resnet_blocks - 2) + [(in_channels, out_channels)]
        self.resnet_attn_blocks = nn.ModuleList([
            nn.ModuleList([
                ResNetBlock(in_channel, out_channel, time_embed_dim, groups, up_resolution),
                set_default_layer(
                    exist(context_dim),
                    AttentionBlock, (out_channel, context_dim), {'num_conditions': num_conditions, 'groups': groups, 'feed_forward_mult': 4},
                    layer_2=Identity
                )
            ]) for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions)
        ])

        self.self_attention_block = set_default_layer(
            self_attention,
            AttentionBlock, (out_channels,), {'feed_forward_mult': 4, 'groups': groups},
            layer_2=Identity
        )

    def forward(self, x, time_embed, context=None, context_mask=None, context_idx=None):
        for resnet_block, attention in self.resnet_attn_blocks:
            x = resnet_block(x, time_embed)
            x = attention(x, context, context_mask, context_idx)
        x = self.self_attention_block(x)
        return x

    
class UNet(nn.Module):

    def __init__(self,
                 model_channels,
                 init_channels=128,
                 num_channels=3,
                 time_embed_dim=512,
                 context_dim=None,
                 groups=32,
                 feature_pooling_type='attention',
                 dim_mult=(1, 2, 4, 8),
                 num_resnet_blocks=(2, 4, 8, 8),
                 num_conditions=1,
                 skip_connect_scale=1.,
                 add_cross_attention=(False, False, False, False),
                 add_self_attention=(False, False, False, False),
                 lowres_cond=True,
                ):
        super().__init__()
        out_channels = num_channels
        num_channels = set_default_item(lowres_cond, num_channels * 2, num_channels)
        init_channels = init_channels or model_channels
        self.num_conditions = num_conditions
        self.skip_connect_scale = skip_connect_scale
        self.to_time_embed = nn.Sequential(
            SinusoidalPosEmb(init_channels),
            nn.Linear(init_channels, time_embed_dim),
            nn.SiLU(),
            nn.Linear(time_embed_dim, time_embed_dim)
        )

        self.init_conv = nn.Conv2d(num_channels, init_channels, kernel_size=3, padding=1)

        hidden_dims = [init_channels, *map(lambda mult: model_channels * mult, dim_mult)]
        in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
        text_dims = [set_default_item(is_exist, context_dim) for is_exist in add_cross_attention]
        layer_params = [num_resnet_blocks, text_dims, add_self_attention]
        rev_layer_params = map(reversed, layer_params)

        cat_dims = []
        self.num_levels = len(in_out_dims)
        self.down_samples = nn.ModuleList([])
        for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(zip(in_out_dims, *layer_params)):
            down_sample = level != (self.num_levels - 1)
            cat_dims.append(set_default_item(level != (self.num_levels - 1), out_dim, 0))
            self.down_samples.append(
                DownSampleBlock(
                    in_dim, out_dim, time_embed_dim, res_block_num, groups, down_sample, text_dim, self_attention, num_conditions
                )
            )

        self.up_samples = nn.ModuleList([])
        for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(zip(reversed(in_out_dims), *rev_layer_params)):
            up_sample = level != 0
            self.up_samples.append(
                UpSampleBlock(
                    in_dim, cat_dims.pop(), out_dim, time_embed_dim, res_block_num, groups, up_sample, text_dim, self_attention, num_conditions
                )
            )
        
        self.norm = nn.GroupNorm(groups, init_channels)
        self.activation = nn.SiLU()
        self.out_conv = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)

    def forward(self, x, time, context=None, context_mask=None, context_idx=None, lowres_img=None):
        if exist(lowres_img):
            _, _, new_height, new_width = x.shape
            upsampled = F.interpolate(lowres_img, (new_height, new_width), mode="bilinear")
            x = torch.cat([x, upsampled], dim=1)
        time_embed = self.to_time_embed(time)

        hidden_states = []
        x = self.init_conv(x)
        for level, down_sample in enumerate(self.down_samples):
            x = down_sample(x, time_embed, context, context_mask, context_idx)
            if level != self.num_levels - 1:
                hidden_states.append(x)
        for level, up_sample in enumerate(self.up_samples):
            if level != 0:
                x = torch.cat([x, hidden_states.pop() / self.skip_connect_scale], dim=1)
            x = up_sample(x, time_embed, context, context_mask, context_idx)
        x = self.norm(x)
        x = self.activation(x)
        x = self.out_conv(x)
        return x