Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,9 @@ import torch
|
|
6 |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, FluxPipeline
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
from huggingface_hub import hf_hub_download
|
|
|
9 |
|
|
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
@@ -14,10 +16,10 @@ repo_name = "ByteDance/Hyper-SD"
|
|
14 |
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
|
15 |
hyper_lora = hf_hub_download(repo_name, ckpt_name)
|
16 |
|
17 |
-
pipe = FluxPipeline.from_pretrained(base_model_id, token=
|
18 |
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
19 |
pipe.fuse_lora(lora_scale=0.125)
|
20 |
-
pipe.to("cuda", dtype=
|
21 |
|
22 |
|
23 |
# pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
|
|
|
6 |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, FluxPipeline
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
+
import os
|
10 |
|
11 |
+
token_hf = os.environ["HF_TOKEN"]
|
12 |
dtype = torch.bfloat16
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
|
|
16 |
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
|
17 |
hyper_lora = hf_hub_download(repo_name, ckpt_name)
|
18 |
|
19 |
+
pipe = FluxPipeline.from_pretrained(base_model_id, token=token_hf)
|
20 |
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
21 |
pipe.fuse_lora(lora_scale=0.125)
|
22 |
+
pipe.to("cuda", dtype=dtype)
|
23 |
|
24 |
|
25 |
# pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
|