import gradio as gr title = "ProphetNet" description = "Gradio Demo for ProphetNet. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training
" examples = [ ["Paris is the capital of France","prophetnet-large-uncased"] ] io1 = gr.Interface.load("huggingface/microsoft/prophetnet-large-uncased") io2 = gr.Interface.load("huggingface/microsoft/prophetnet-large-uncased-squad-qg") def inference(text, model): if model == "prophetnet-large-uncased": outtext = io1(text) else: outtext = io2(text) return outtext gr.Interface( inference, [gr.inputs.Textbox(label="Input"),gr.inputs.Dropdown(choices=["prophetnet-large-uncased","prophetnet-large-uncased-squad-qg"], type="value", default="prophetnet-large-uncased", label="model") ], gr.outputs.Textbox(label="Output"), examples=examples, article=article, title=title, description=description).launch(enable_queue=True, cache_examples=True)