Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import gradio | |
| import torch | |
| from transformers import LogitsProcessor | |
| import numpy as np | |
| from modules import shared | |
| params = { | |
| 'color_by_perplexity': False, | |
| 'color_by_probability': False, | |
| 'ppl_scale': 15.0, # No slider for this right now, because I don't think it really needs to be changed. Very large perplexity scores don't show up often. | |
| #'probability_dropdown': False | |
| } | |
| class PerplexityLogits(LogitsProcessor): | |
| def __init__(self, verbose=False): | |
| self.generated_token_ids = [] | |
| self.selected_probs = [] | |
| self.top_token_ids_list = [] | |
| self.top_probs_list = [] | |
| self.perplexities_list = [] | |
| self.last_probs = None | |
| self.verbose = verbose | |
| def __call__(self, input_ids, scores): | |
| probs = torch.softmax(scores, dim=-1, dtype=torch.float) | |
| log_probs = torch.nan_to_num(torch.log(probs)) | |
| entropy = -torch.sum(probs*log_probs) | |
| entropy = entropy.cpu().numpy() | |
| perplexity = round(float(np.exp(entropy)), 4) | |
| self.perplexities_list.append(perplexity) | |
| last_token_id = int(input_ids[0][-1].cpu().numpy().item()) | |
| # Store the generated tokens (not sure why this isn't accessible in the output endpoint!) | |
| self.generated_token_ids.append(last_token_id) | |
| # Get last probability, and add to the list if it wasn't there | |
| if len(self.selected_probs) > 0: | |
| # Is the selected token in the top tokens? | |
| if self.verbose: | |
| print(shared.tokenizer.decode(last_token_id)) | |
| print([shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1]]) | |
| print(self.top_probs_list[-1]) | |
| if last_token_id in self.top_token_ids_list[-1]: | |
| idx = self.top_token_ids_list[-1].index(last_token_id) | |
| self.selected_probs.append(self.top_probs_list[-1][idx]) | |
| else: | |
| self.top_token_ids_list[-1].append(last_token_id) | |
| last_prob = round(float(self.last_probs[last_token_id]), 4) | |
| self.top_probs_list[-1].append(last_prob) | |
| self.selected_probs.append(last_prob) | |
| else: | |
| self.selected_probs.append(1.0) # Placeholder for the last token of the prompt | |
| if self.verbose: | |
| pplbar = "-" | |
| if not np.isnan(perplexity): | |
| pplbar = "*"*round(perplexity) | |
| print(f"{last_token}\t{perplexity:.2f}\t{pplbar}") | |
| # Get top 5 probabilities | |
| top_tokens_and_probs = torch.topk(probs, 5) | |
| top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist() | |
| top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist() | |
| self.top_token_ids_list.append(top_token_ids) | |
| self.top_probs_list.append(top_probs) | |
| probs = probs.cpu().numpy().flatten() | |
| self.last_probs = probs # Need to keep this as a reference for top probs | |
| # Doesn't actually modify the logits! | |
| return scores | |
| # Stores the perplexity and top probabilities | |
| ppl_logits_processor = None | |
| def logits_processor_modifier(logits_processor_list, input_ids): | |
| global ppl_logits_processor | |
| ppl_logits_processor = PerplexityLogits() | |
| logits_processor_list.append(ppl_logits_processor) | |
| def output_modifier(text): | |
| global ppl_logits_processor | |
| # TODO: It's probably more efficient to do this above rather than modifying all these lists | |
| # Remove last element of perplexities_list, top_token_ids_list, top_tokens_list, top_probs_list since everything is off by one because this extension runs before generation | |
| perplexities = ppl_logits_processor.perplexities_list[:-1] | |
| top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1] | |
| top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids] for top_token_ids in top_token_ids_list] | |
| top_probs_list = ppl_logits_processor.top_probs_list[:-1] | |
| # Remove first element of generated_token_ids, generated_tokens, selected_probs because they are for the last token of the prompt | |
| gen_token_ids = ppl_logits_processor.generated_token_ids[1:] | |
| gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids] | |
| sel_probs = ppl_logits_processor.selected_probs[1:] | |
| end_part = '</span>' # Helps with finding the index after replacing part of the text. | |
| in_code = False # Since the <span> tags mess up code blocks, avoid coloring while inside a code block, based on finding tokens with '`' in them | |
| if params['color_by_probability'] and params['color_by_perplexity']: | |
| i = 0 | |
| for token, prob, ppl, top_tokens, top_probs in zip(gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list): | |
| if '`' in token: | |
| in_code = not in_code | |
| continue | |
| if in_code: | |
| continue | |
| color = probability_perplexity_color_scale(prob, ppl) | |
| if token in text[i:]: | |
| text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1) | |
| i += text[i:].find(end_part) + len(end_part) | |
| elif params['color_by_perplexity']: | |
| i = 0 | |
| for token, ppl, top_tokens, top_probs in zip(gen_tokens, perplexities, top_tokens_list, top_probs_list): | |
| if '`' in token: | |
| in_code = not in_code | |
| continue | |
| if in_code: | |
| continue | |
| color = perplexity_color_scale(ppl) | |
| if token in text[i:]: | |
| text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1) | |
| i += text[i:].find(end_part) + len(end_part) | |
| elif params['color_by_probability']: | |
| i = 0 | |
| for token, prob, top_tokens, top_probs in zip(gen_tokens, sel_probs, top_tokens_list, top_probs_list): | |
| if '`' in token: | |
| in_code = not in_code | |
| continue | |
| if in_code: | |
| continue | |
| color = probability_color_scale(prob) | |
| if token in text[i:]: | |
| text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1) | |
| i += text[i:].find(end_part) + len(end_part) | |
| print('Average perplexity:', round(np.mean(perplexities), 4)) | |
| return text | |
| # Green-yellow-red color scale | |
| def probability_color_scale(prob): | |
| rv = 0 | |
| gv = 0 | |
| if prob <= 0.5: | |
| rv = 'ff' | |
| gv = hex(int(255*prob*2))[2:] | |
| if len(gv) < 2: | |
| gv = '0'*(2 - len(gv)) + gv | |
| else: | |
| rv = hex(int(255 - 255*(prob - 0.5)*2))[2:] | |
| gv = 'ff' | |
| if len(rv) < 2: | |
| rv = '0'*(2 - len(rv)) + rv | |
| return rv + gv + '00' | |
| # Red component only, white for 0 perplexity (sorry if you're not in dark mode) | |
| def perplexity_color_scale(ppl): | |
| value = hex(max(int(255.0 - params['ppl_scale']*(float(ppl)-1.0)), 0))[2:] | |
| if len(value) < 2: | |
| value = '0'*(2 - len(value)) + value | |
| return 'ff' + value + value | |
| # Green-yellow-red for probability and blue component for perplexity | |
| def probability_perplexity_color_scale(prob, ppl): | |
| rv = 0 | |
| gv = 0 | |
| bv = hex(min(max(int(params['ppl_scale']*(float(ppl)-1.0)), 0), 255))[2:] | |
| if len(bv) < 2: | |
| bv = '0'*(2 - len(bv)) + bv | |
| if prob <= 0.5: | |
| rv = 'ff' | |
| gv = hex(int(255*prob*2))[2:] | |
| if len(gv) < 2: | |
| gv = '0'*(2 - len(gv)) + gv | |
| else: | |
| rv = hex(int(255 - 255*(prob - 0.5)*2))[2:] | |
| gv = 'ff' | |
| if len(rv) < 2: | |
| rv = '0'*(2 - len(rv)) + rv | |
| return rv + gv + bv | |
| def add_color_html(token, color): | |
| return f'<span style="color: #{color}">{token}</span>' | |
| """ | |
| # This is still very broken at the moment, needs CSS too but I'm not very good at CSS (and neither is GPT-4 apparently) so I still need to figure that out. | |
| def add_dropdown_html(token, color, top_tokens, top_probs): | |
| html = f'<span class="hoverable" style="color: #{color}">{token}<div class="dropdown"><table class="dropdown-content">' | |
| for token, prob in zip(top_tokens, top_probs): | |
| # TODO: Background color? Bold for selected token? | |
| # Bigger issue: Why is there a newline after the first token, and the dropdown fails there? | |
| # The HTML ends up like <p><span>word</span></p><div>...</div>, | |
| # even though for all other tokens it shows up correctly. | |
| row_color = probability_color_scale(prob) | |
| html += f'<tr><td style="color: #{row_color}">{token}</td><td style="color: #{row_color}">{prob}</td></tr>' | |
| html += '</table></div></span>' | |
| return html | |
| """ | |
| def ui(): | |
| color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.") | |
| def update_color_by_ppl_check(x): | |
| params.update({'color_by_perplexity': x}) | |
| color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None) | |
| color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.") | |
| def update_color_by_prob_check(x): | |
| params.update({'color_by_probability': x}) | |
| color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None) | |
| # Doesn't work yet... | |
| """ | |
| prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown") | |
| def update_prob_dropdown_check(x): | |
| params.update({'probability_dropdown': x}) | |
| prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None) | |
| """ | |