dnzblgn's picture
Update app.py
7493902 verified
raw
history blame
6.31 kB
import gradio as gr
import os
import docx
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from langchain_huggingface import HuggingFaceEmbeddings
# Initialize semantic model
semantic_model = SentenceTransformer("all-MiniLM-L6-v2")
def extract_text_from_docx(file_path):
doc = docx.Document(file_path)
extracted_text = []
for para in doc.paragraphs:
if para.text.strip():
extracted_text.append(para.text.strip())
for table in doc.tables:
extracted_text.append("πŸ“Œ Table Detected:")
for row in table.rows:
row_text = [cell.text.strip() for cell in row.cells]
if any(row_text):
extracted_text.append(" | ".join(row_text))
return "\n".join(extracted_text)
def load_documents():
file_paths = {
"Fastener_Types_Manual": "Fastener_Types_Manual.docx",
"Manufacturing_Expert_Manual": "Manufacturing Expert Manual.docx"
}
all_splits = []
for doc_name, file_path in file_paths.items():
if not os.path.exists(file_path):
raise FileNotFoundError(f"Document not found: {file_path}")
print(f"Extracting text from {file_path}...")
full_text = extract_text_from_docx(file_path)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
doc_splits = text_splitter.create_documents([full_text])
for chunk in doc_splits:
chunk.metadata = {"source": doc_name}
all_splits.extend(doc_splits)
return all_splits
def create_db(splits):
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb, embeddings
def retrieve_documents(query, retriever, embeddings):
query_embedding = np.array(embeddings.embed_query(query)).reshape(1, -1)
results = retriever.invoke(query)
if not results:
return []
doc_embeddings = np.array([embeddings.embed_query(doc.page_content) for doc in results])
similarity_scores = cosine_similarity(query_embedding, doc_embeddings)[0]
MIN_SIMILARITY = 0.3
filtered_results = [(doc, sim) for doc, sim in zip(results, similarity_scores) if sim >= MIN_SIMILARITY]
print(f"πŸ” Query: {query}")
print(f"πŸ“„ Retrieved Docs: {[(doc.metadata.get('source', 'Unknown'), sim) for doc, sim in filtered_results]}")
return [doc for doc, _ in filtered_results] if filtered_results else []
def validate_query_semantically(query, retrieved_docs):
if not retrieved_docs:
return False
combined_text = " ".join([doc.page_content for doc in retrieved_docs])
query_embedding = semantic_model.encode(query, normalize_embeddings=True)
doc_embedding = semantic_model.encode(combined_text, normalize_embeddings=True)
similarity_score = np.dot(query_embedding, doc_embedding)
print(f"πŸ” Semantic Similarity Score: {similarity_score}")
return similarity_score >= 0.3
def initialize_chatbot(vector_db, embeddings):
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key='answer')
retriever = vector_db.as_retriever(search_kwargs={"k": 5})
system_prompt = """You are an AI assistant that answers questions ONLY based on the provided documents.
- If no relevant documents are retrieved, respond with: "I couldn't find any relevant information."
- If the meaning of the query does not match the retrieved documents, say "I couldn't find any relevant information."
- Do NOT attempt to answer from general knowledge."""
llm = HuggingFaceEndpoint(
repo_id="tiiuae/falcon-40b-instruct",
huggingfacehub_api_token=os.environ.get("HUGGINGFACE_API_TOKEN"),
temperature=0.1,
max_new_tokens=400,
task="text-generation",
system_prompt=system_prompt
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
return_source_documents=True,
verbose=False
)
return retriever, qa_chain
def handle_query(query, history, retriever, qa_chain, embeddings):
retrieved_docs = retrieve_documents(query, retriever, embeddings)
if not retrieved_docs or not validate_query_semantically(query, retrieved_docs):
return history + [(query, "I couldn't find any relevant information.")], ""
response = qa_chain.invoke({"question": query, "chat_history": history})
assistant_response = response['answer'].strip()
if not validate_query_semantically(query, retrieved_docs):
assistant_response = "I couldn't find any relevant information."
assistant_response += f"\n\nπŸ“„ Source: {', '.join(set(doc.metadata.get('source', 'Unknown') for doc in retrieved_docs))}"
history.append((query, assistant_response))
return history, ""
def demo():
documents = load_documents()
vector_db, embeddings = create_db(documents)
retriever, qa_chain = initialize_chatbot(vector_db, embeddings)
with gr.Blocks() as app:
gr.Markdown("### πŸ€– Document Question Answering System")
chatbot = gr.Chatbot()
query_input = gr.Textbox(label="Ask a question about the documents")
query_btn = gr.Button("Submit")
def user_query_handler(query, history):
return handle_query(query, history, retriever, qa_chain, embeddings)
query_btn.click(
user_query_handler,
inputs=[query_input, chatbot],
outputs=[chatbot, query_input]
)
query_input.submit(
user_query_handler,
inputs=[query_input, chatbot],
outputs=[chatbot, query_input]
)
app.launch()
if __name__ == "__main__":
demo()