Spaces:
Sleeping
Sleeping
File size: 6,310 Bytes
b07edc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
import os
import docx
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from langchain_huggingface import HuggingFaceEmbeddings
# Initialize semantic model
semantic_model = SentenceTransformer("all-MiniLM-L6-v2")
def extract_text_from_docx(file_path):
doc = docx.Document(file_path)
extracted_text = []
for para in doc.paragraphs:
if para.text.strip():
extracted_text.append(para.text.strip())
for table in doc.tables:
extracted_text.append("π Table Detected:")
for row in table.rows:
row_text = [cell.text.strip() for cell in row.cells]
if any(row_text):
extracted_text.append(" | ".join(row_text))
return "\n".join(extracted_text)
def load_documents():
file_paths = {
"Fastener_Types_Manual": "Fastener_Types_Manual.docx",
"Manufacturing_Expert_Manual": "Manufacturing Expert Manual.docx"
}
all_splits = []
for doc_name, file_path in file_paths.items():
if not os.path.exists(file_path):
raise FileNotFoundError(f"Document not found: {file_path}")
print(f"Extracting text from {file_path}...")
full_text = extract_text_from_docx(file_path)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
doc_splits = text_splitter.create_documents([full_text])
for chunk in doc_splits:
chunk.metadata = {"source": doc_name}
all_splits.extend(doc_splits)
return all_splits
def create_db(splits):
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb, embeddings
def retrieve_documents(query, retriever, embeddings):
query_embedding = np.array(embeddings.embed_query(query)).reshape(1, -1)
results = retriever.invoke(query)
if not results:
return []
doc_embeddings = np.array([embeddings.embed_query(doc.page_content) for doc in results])
similarity_scores = cosine_similarity(query_embedding, doc_embeddings)[0]
MIN_SIMILARITY = 0.5
filtered_results = [(doc, sim) for doc, sim in zip(results, similarity_scores) if sim >= MIN_SIMILARITY]
print(f"π Query: {query}")
print(f"π Retrieved Docs: {[(doc.metadata.get('source', 'Unknown'), sim) for doc, sim in filtered_results]}")
return [doc for doc, _ in filtered_results] if filtered_results else []
def validate_query_semantically(query, retrieved_docs):
if not retrieved_docs:
return False
combined_text = " ".join([doc.page_content for doc in retrieved_docs])
query_embedding = semantic_model.encode(query, normalize_embeddings=True)
doc_embedding = semantic_model.encode(combined_text, normalize_embeddings=True)
similarity_score = np.dot(query_embedding, doc_embedding)
print(f"π Semantic Similarity Score: {similarity_score}")
return similarity_score >= 0.3
def initialize_chatbot(vector_db, embeddings):
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key='answer')
retriever = vector_db.as_retriever(search_kwargs={"k": 5})
system_prompt = """You are an AI assistant that answers questions ONLY based on the provided documents.
- If no relevant documents are retrieved, respond with: "I couldn't find any relevant information."
- If the meaning of the query does not match the retrieved documents, say "I couldn't find any relevant information."
- Do NOT attempt to answer from general knowledge."""
llm = HuggingFaceEndpoint(
repo_id="tiiuae/falcon-40b-instruct",
huggingfacehub_api_token=os.environ.get("HUGGINGFACE_API_TOKEN"),
temperature=0.1,
max_new_tokens=400,
task="text-generation",
system_prompt=system_prompt
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
return_source_documents=True,
verbose=False
)
return retriever, qa_chain
def handle_query(query, history, retriever, qa_chain, embeddings):
retrieved_docs = retrieve_documents(query, retriever, embeddings)
if not retrieved_docs or not validate_query_semantically(query, retrieved_docs):
return history + [(query, "I couldn't find any relevant information.")], ""
response = qa_chain.invoke({"question": query, "chat_history": history})
assistant_response = response['answer'].strip()
if not validate_query_semantically(query, retrieved_docs):
assistant_response = "I couldn't find any relevant information."
assistant_response += f"\n\nπ Source: {', '.join(set(doc.metadata.get('source', 'Unknown') for doc in retrieved_docs))}"
history.append((query, assistant_response))
return history, ""
def demo():
documents = load_documents()
vector_db, embeddings = create_db(documents)
retriever, qa_chain = initialize_chatbot(vector_db, embeddings)
with gr.Blocks() as app:
gr.Markdown("### π€ Document Question Answering System")
chatbot = gr.Chatbot()
query_input = gr.Textbox(label="Ask a question about the documents")
query_btn = gr.Button("Submit")
def user_query_handler(query, history):
return handle_query(query, history, retriever, qa_chain, embeddings)
query_btn.click(
user_query_handler,
inputs=[query_input, chatbot],
outputs=[chatbot, query_input]
)
query_input.submit(
user_query_handler,
inputs=[query_input, chatbot],
outputs=[chatbot, query_input]
)
app.launch()
if __name__ == "__main__":
demo()
|