Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,80 @@ from langchain.chains import ConversationalRetrievalChain
|
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain_community.llms import HuggingFaceEndpoint
|
12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# β
Use a strong sentence embedding model
|
15 |
semantic_model = SentenceTransformer("all-MiniLM-L6-v2")
|
16 |
|
@@ -103,7 +176,7 @@ def validate_query_semantically(query, retrieved_docs):
|
|
103 |
|
104 |
print(f"π Semantic Similarity Score: {similarity_score}")
|
105 |
|
106 |
-
return similarity_score >= 0.
|
107 |
|
108 |
|
109 |
def handle_query(query, history, retriever, qa_chain, embeddings):
|
@@ -163,24 +236,64 @@ def initialize_chatbot(vector_db):
|
|
163 |
return retriever, qa_chain, embeddings
|
164 |
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
def demo():
|
167 |
-
|
|
|
|
|
|
|
|
|
168 |
retriever, qa_chain, embeddings = initialize_chatbot(create_db(load_documents()))
|
169 |
-
|
170 |
with gr.Blocks() as app:
|
171 |
-
gr.Markdown("### π€ **Fastener Agent** π")
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
def user_query_handler(query, history):
|
177 |
return handle_query(query, history, retriever, qa_chain, embeddings)
|
178 |
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
app.launch()
|
183 |
|
184 |
-
|
185 |
if __name__ == "__main__":
|
186 |
demo()
|
|
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain_community.llms import HuggingFaceEndpoint
|
12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
13 |
+
import torch
|
14 |
+
from PIL import Image
|
15 |
+
from torchvision import transforms
|
16 |
+
from torchvision.models import resnet50, ResNet50_Weights
|
17 |
+
from torchvision import transforms, models
|
18 |
+
|
19 |
+
|
20 |
+
class GeometryImageClassifier:
|
21 |
+
def __init__(self):
|
22 |
+
# Load ResNet50 but only use it for feature extraction
|
23 |
+
self.model = models.resnet50(weights='DEFAULT')
|
24 |
+
# Remove the final classification layer
|
25 |
+
self.model.fc = torch.nn.Identity()
|
26 |
+
self.model.eval()
|
27 |
+
|
28 |
+
self.transform = transforms.Compose([
|
29 |
+
transforms.Resize((224, 224)),
|
30 |
+
transforms.ToTensor(),
|
31 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
32 |
+
])
|
33 |
+
|
34 |
+
# Pre-computed embeddings for our 3 reference images with manual labels
|
35 |
+
self.reference_embeddings = {
|
36 |
+
"flat.png": {
|
37 |
+
"embedding": None, # Will be computed on first run
|
38 |
+
"label": "Flat or Sheet-Based"
|
39 |
+
},
|
40 |
+
"cylindrical.png": {
|
41 |
+
"embedding": None,
|
42 |
+
"label": "Cylindrical"
|
43 |
+
},
|
44 |
+
"complex.png": {
|
45 |
+
"embedding": None,
|
46 |
+
"label": "Complex Multi Axis Geometry"
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
def compute_embedding(self, images):
|
51 |
+
img = Image.open(images).convert('RGB')
|
52 |
+
img_tensor = self.transform(img).unsqueeze(0)
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
embedding = self.model(img_tensor)
|
56 |
+
return embedding.squeeze().numpy()
|
57 |
+
|
58 |
+
def initialize_reference_embeddings(self, reference_folder):
|
59 |
+
for image_name in self.reference_embeddings.keys():
|
60 |
+
images = f"{reference_folder}/{image_name}"
|
61 |
+
self.reference_embeddings[image_name]["embedding"] = self.compute_embedding(images)
|
62 |
+
|
63 |
+
def find_closest_geometry(self, query_embedding):
|
64 |
+
best_similarity = -1
|
65 |
+
best_label = None
|
66 |
+
|
67 |
+
for ref_data in self.reference_embeddings.values():
|
68 |
+
similarity = cosine_similarity(
|
69 |
+
query_embedding.reshape(1, -1),
|
70 |
+
ref_data["embedding"].reshape(1, -1)
|
71 |
+
)[0][0]
|
72 |
+
|
73 |
+
if similarity > best_similarity:
|
74 |
+
best_similarity = similarity
|
75 |
+
best_label = ref_data["label"]
|
76 |
+
|
77 |
+
return best_label
|
78 |
+
|
79 |
+
def process_image(self, images):
|
80 |
+
# Compute embedding for the input image
|
81 |
+
query_embedding = self.compute_embedding(images)
|
82 |
+
|
83 |
+
# Find the closest matching reference geometry
|
84 |
+
return self.find_closest_geometry(query_embedding)
|
85 |
+
|
86 |
+
|
87 |
# β
Use a strong sentence embedding model
|
88 |
semantic_model = SentenceTransformer("all-MiniLM-L6-v2")
|
89 |
|
|
|
176 |
|
177 |
print(f"π Semantic Similarity Score: {similarity_score}")
|
178 |
|
179 |
+
return similarity_score >= 0.3 # π₯ Stricter threshold to ensure correctness
|
180 |
|
181 |
|
182 |
def handle_query(query, history, retriever, qa_chain, embeddings):
|
|
|
236 |
return retriever, qa_chain, embeddings
|
237 |
|
238 |
|
239 |
+
def process_image_and_generate_query(image):
|
240 |
+
classifier = GeometryImageClassifier()
|
241 |
+
geometry_type = classifier.process_image(image)
|
242 |
+
|
243 |
+
query = f"I have a {geometry_type} geometry, which screw should I use and what is the best machine to use for {geometry_type} geometry?"
|
244 |
+
return geometry_type, query
|
245 |
+
|
246 |
def demo():
|
247 |
+
# Initialize classifier once at startup
|
248 |
+
classifier = GeometryImageClassifier()
|
249 |
+
classifier.initialize_reference_embeddings("images")
|
250 |
+
|
251 |
+
# Initialize chatbot components
|
252 |
retriever, qa_chain, embeddings = initialize_chatbot(create_db(load_documents()))
|
253 |
+
|
254 |
with gr.Blocks() as app:
|
255 |
+
gr.Markdown("### π€ **Fastener Agent with Image Recognition** π")
|
256 |
+
|
257 |
+
with gr.Row():
|
258 |
+
with gr.Column(scale=1):
|
259 |
+
image_input = gr.Image(type="filepath", label="Upload Geometry Image")
|
260 |
+
geometry_label = gr.Textbox(label="Detected Geometry Type", interactive=False)
|
261 |
+
|
262 |
+
with gr.Column(scale=2):
|
263 |
+
chatbot = gr.Chatbot()
|
264 |
+
query_input = gr.Textbox(label="Ask me a question")
|
265 |
+
query_btn = gr.Button("Ask")
|
266 |
+
|
267 |
+
def image_upload_handler(image):
|
268 |
+
if image is None:
|
269 |
+
return "", ""
|
270 |
+
# Use the initialized classifier
|
271 |
+
geometry_type = classifier.process_image(image)
|
272 |
+
suggested_query = f"I have a {geometry_type} geometry, which screw should I use and what is the best machine to use for {geometry_type} geometry?"
|
273 |
+
return geometry_type, suggested_query
|
274 |
|
275 |
def user_query_handler(query, history):
|
276 |
return handle_query(query, history, retriever, qa_chain, embeddings)
|
277 |
|
278 |
+
image_input.change(
|
279 |
+
image_upload_handler,
|
280 |
+
inputs=[image_input],
|
281 |
+
outputs=[geometry_label, query_input]
|
282 |
+
)
|
283 |
+
|
284 |
+
query_btn.click(
|
285 |
+
user_query_handler,
|
286 |
+
inputs=[query_input, chatbot],
|
287 |
+
outputs=[chatbot, query_input]
|
288 |
+
)
|
289 |
+
|
290 |
+
query_input.submit(
|
291 |
+
user_query_handler,
|
292 |
+
inputs=[query_input, chatbot],
|
293 |
+
outputs=[chatbot, query_input]
|
294 |
+
)
|
295 |
|
296 |
app.launch()
|
297 |
|
|
|
298 |
if __name__ == "__main__":
|
299 |
demo()
|