Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2022-present, the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Check presence of installed packages at runtime.""" | |
import importlib.metadata | |
import os | |
import platform | |
import sys | |
import warnings | |
from typing import Any, Dict | |
from .. import __version__, constants | |
_PY_VERSION: str = sys.version.split()[0].rstrip("+") | |
_package_versions = {} | |
_CANDIDATES = { | |
"aiohttp": {"aiohttp"}, | |
"fastai": {"fastai"}, | |
"fastapi": {"fastapi"}, | |
"fastcore": {"fastcore"}, | |
"gradio": {"gradio"}, | |
"graphviz": {"graphviz"}, | |
"hf_transfer": {"hf_transfer"}, | |
"jinja": {"Jinja2"}, | |
"keras": {"keras"}, | |
"minijinja": {"minijinja"}, | |
"numpy": {"numpy"}, | |
"pillow": {"Pillow"}, | |
"pydantic": {"pydantic"}, | |
"pydot": {"pydot"}, | |
"safetensors": {"safetensors"}, | |
"tensorboard": {"tensorboardX"}, | |
"tensorflow": ( | |
"tensorflow", | |
"tensorflow-cpu", | |
"tensorflow-gpu", | |
"tf-nightly", | |
"tf-nightly-cpu", | |
"tf-nightly-gpu", | |
"intel-tensorflow", | |
"intel-tensorflow-avx512", | |
"tensorflow-rocm", | |
"tensorflow-macos", | |
), | |
"torch": {"torch"}, | |
} | |
# Check once at runtime | |
for candidate_name, package_names in _CANDIDATES.items(): | |
_package_versions[candidate_name] = "N/A" | |
for name in package_names: | |
try: | |
_package_versions[candidate_name] = importlib.metadata.version(name) | |
break | |
except importlib.metadata.PackageNotFoundError: | |
pass | |
def _get_version(package_name: str) -> str: | |
return _package_versions.get(package_name, "N/A") | |
def is_package_available(package_name: str) -> bool: | |
return _get_version(package_name) != "N/A" | |
# Python | |
def get_python_version() -> str: | |
return _PY_VERSION | |
# Huggingface Hub | |
def get_hf_hub_version() -> str: | |
return __version__ | |
# aiohttp | |
def is_aiohttp_available() -> bool: | |
return is_package_available("aiohttp") | |
def get_aiohttp_version() -> str: | |
return _get_version("aiohttp") | |
# FastAI | |
def is_fastai_available() -> bool: | |
return is_package_available("fastai") | |
def get_fastai_version() -> str: | |
return _get_version("fastai") | |
# FastAPI | |
def is_fastapi_available() -> bool: | |
return is_package_available("fastapi") | |
def get_fastapi_version() -> str: | |
return _get_version("fastapi") | |
# Fastcore | |
def is_fastcore_available() -> bool: | |
return is_package_available("fastcore") | |
def get_fastcore_version() -> str: | |
return _get_version("fastcore") | |
# FastAI | |
def is_gradio_available() -> bool: | |
return is_package_available("gradio") | |
def get_gradio_version() -> str: | |
return _get_version("gradio") | |
# Graphviz | |
def is_graphviz_available() -> bool: | |
return is_package_available("graphviz") | |
def get_graphviz_version() -> str: | |
return _get_version("graphviz") | |
# hf_transfer | |
def is_hf_transfer_available() -> bool: | |
return is_package_available("hf_transfer") | |
def get_hf_transfer_version() -> str: | |
return _get_version("hf_transfer") | |
# keras | |
def is_keras_available() -> bool: | |
return is_package_available("keras") | |
def get_keras_version() -> str: | |
return _get_version("keras") | |
# Minijinja | |
def is_minijinja_available() -> bool: | |
return is_package_available("minijinja") | |
def get_minijinja_version() -> str: | |
return _get_version("minijinja") | |
# Numpy | |
def is_numpy_available() -> bool: | |
return is_package_available("numpy") | |
def get_numpy_version() -> str: | |
return _get_version("numpy") | |
# Jinja | |
def is_jinja_available() -> bool: | |
return is_package_available("jinja") | |
def get_jinja_version() -> str: | |
return _get_version("jinja") | |
# Pillow | |
def is_pillow_available() -> bool: | |
return is_package_available("pillow") | |
def get_pillow_version() -> str: | |
return _get_version("pillow") | |
# Pydantic | |
def is_pydantic_available() -> bool: | |
if not is_package_available("pydantic"): | |
return False | |
# For Pydantic, we add an extra check to test whether it is correctly installed or not. If both pydantic 2.x and | |
# typing_extensions<=4.5.0 are installed, then pydantic will fail at import time. This should not happen when | |
# it is installed with `pip install huggingface_hub[inference]` but it can happen when it is installed manually | |
# by the user in an environment that we don't control. | |
# | |
# Usually we won't need to do this kind of check on optional dependencies. However, pydantic is a special case | |
# as it is automatically imported when doing `from huggingface_hub import ...` even if the user doesn't use it. | |
# | |
# See https://github.com/huggingface/huggingface_hub/pull/1829 for more details. | |
try: | |
from pydantic import validator # noqa: F401 | |
except ImportError: | |
# Example: "ImportError: cannot import name 'TypeAliasType' from 'typing_extensions'" | |
warnings.warn( | |
"Pydantic is installed but cannot be imported. Please check your installation. `huggingface_hub` will " | |
"default to not using Pydantic. Error message: '{e}'" | |
) | |
return False | |
return True | |
def get_pydantic_version() -> str: | |
return _get_version("pydantic") | |
# Pydot | |
def is_pydot_available() -> bool: | |
return is_package_available("pydot") | |
def get_pydot_version() -> str: | |
return _get_version("pydot") | |
# Tensorboard | |
def is_tensorboard_available() -> bool: | |
return is_package_available("tensorboard") | |
def get_tensorboard_version() -> str: | |
return _get_version("tensorboard") | |
# Tensorflow | |
def is_tf_available() -> bool: | |
return is_package_available("tensorflow") | |
def get_tf_version() -> str: | |
return _get_version("tensorflow") | |
# Torch | |
def is_torch_available() -> bool: | |
return is_package_available("torch") | |
def get_torch_version() -> str: | |
return _get_version("torch") | |
# Safetensors | |
def is_safetensors_available() -> bool: | |
return is_package_available("safetensors") | |
# Shell-related helpers | |
try: | |
# Set to `True` if script is running in a Google Colab notebook. | |
# If running in Google Colab, git credential store is set globally which makes the | |
# warning disappear. See https://github.com/huggingface/huggingface_hub/issues/1043 | |
# | |
# Taken from https://stackoverflow.com/a/63519730. | |
_is_google_colab = "google.colab" in str(get_ipython()) # type: ignore # noqa: F821 | |
except NameError: | |
_is_google_colab = False | |
def is_notebook() -> bool: | |
"""Return `True` if code is executed in a notebook (Jupyter, Colab, QTconsole). | |
Taken from https://stackoverflow.com/a/39662359. | |
Adapted to make it work with Google colab as well. | |
""" | |
try: | |
shell_class = get_ipython().__class__ # type: ignore # noqa: F821 | |
for parent_class in shell_class.__mro__: # e.g. "is subclass of" | |
if parent_class.__name__ == "ZMQInteractiveShell": | |
return True # Jupyter notebook, Google colab or qtconsole | |
return False | |
except NameError: | |
return False # Probably standard Python interpreter | |
def is_google_colab() -> bool: | |
"""Return `True` if code is executed in a Google colab. | |
Taken from https://stackoverflow.com/a/63519730. | |
""" | |
return _is_google_colab | |
def is_colab_enterprise() -> bool: | |
"""Return `True` if code is executed in a Google Colab Enterprise environment.""" | |
return os.environ.get("VERTEX_PRODUCT") == "COLAB_ENTERPRISE" | |
def dump_environment_info() -> Dict[str, Any]: | |
"""Dump information about the machine to help debugging issues. | |
Similar helper exist in: | |
- `datasets` (https://github.com/huggingface/datasets/blob/main/src/datasets/commands/env.py) | |
- `diffusers` (https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/env.py) | |
- `transformers` (https://github.com/huggingface/transformers/blob/main/src/transformers/commands/env.py) | |
""" | |
from huggingface_hub import get_token, whoami | |
from huggingface_hub.utils import list_credential_helpers | |
token = get_token() | |
# Generic machine info | |
info: Dict[str, Any] = { | |
"huggingface_hub version": get_hf_hub_version(), | |
"Platform": platform.platform(), | |
"Python version": get_python_version(), | |
} | |
# Interpreter info | |
try: | |
shell_class = get_ipython().__class__ # type: ignore # noqa: F821 | |
info["Running in iPython ?"] = "Yes" | |
info["iPython shell"] = shell_class.__name__ | |
except NameError: | |
info["Running in iPython ?"] = "No" | |
info["Running in notebook ?"] = "Yes" if is_notebook() else "No" | |
info["Running in Google Colab ?"] = "Yes" if is_google_colab() else "No" | |
info["Running in Google Colab Enterprise ?"] = "Yes" if is_colab_enterprise() else "No" | |
# Login info | |
info["Token path ?"] = constants.HF_TOKEN_PATH | |
info["Has saved token ?"] = token is not None | |
if token is not None: | |
try: | |
info["Who am I ?"] = whoami()["name"] | |
except Exception: | |
pass | |
try: | |
info["Configured git credential helpers"] = ", ".join(list_credential_helpers()) | |
except Exception: | |
pass | |
# Installed dependencies | |
info["FastAI"] = get_fastai_version() | |
info["Tensorflow"] = get_tf_version() | |
info["Torch"] = get_torch_version() | |
info["Jinja2"] = get_jinja_version() | |
info["Graphviz"] = get_graphviz_version() | |
info["keras"] = get_keras_version() | |
info["Pydot"] = get_pydot_version() | |
info["Pillow"] = get_pillow_version() | |
info["hf_transfer"] = get_hf_transfer_version() | |
info["gradio"] = get_gradio_version() | |
info["tensorboard"] = get_tensorboard_version() | |
info["numpy"] = get_numpy_version() | |
info["pydantic"] = get_pydantic_version() | |
info["aiohttp"] = get_aiohttp_version() | |
# Environment variables | |
info["ENDPOINT"] = constants.ENDPOINT | |
info["HF_HUB_CACHE"] = constants.HF_HUB_CACHE | |
info["HF_ASSETS_CACHE"] = constants.HF_ASSETS_CACHE | |
info["HF_TOKEN_PATH"] = constants.HF_TOKEN_PATH | |
info["HF_HUB_OFFLINE"] = constants.HF_HUB_OFFLINE | |
info["HF_HUB_DISABLE_TELEMETRY"] = constants.HF_HUB_DISABLE_TELEMETRY | |
info["HF_HUB_DISABLE_PROGRESS_BARS"] = constants.HF_HUB_DISABLE_PROGRESS_BARS | |
info["HF_HUB_DISABLE_SYMLINKS_WARNING"] = constants.HF_HUB_DISABLE_SYMLINKS_WARNING | |
info["HF_HUB_DISABLE_EXPERIMENTAL_WARNING"] = constants.HF_HUB_DISABLE_EXPERIMENTAL_WARNING | |
info["HF_HUB_DISABLE_IMPLICIT_TOKEN"] = constants.HF_HUB_DISABLE_IMPLICIT_TOKEN | |
info["HF_HUB_ENABLE_HF_TRANSFER"] = constants.HF_HUB_ENABLE_HF_TRANSFER | |
info["HF_HUB_ETAG_TIMEOUT"] = constants.HF_HUB_ETAG_TIMEOUT | |
info["HF_HUB_DOWNLOAD_TIMEOUT"] = constants.HF_HUB_DOWNLOAD_TIMEOUT | |
print("\nCopy-and-paste the text below in your GitHub issue.\n") | |
print("\n".join([f"- {prop}: {val}" for prop, val in info.items()]) + "\n") | |
return info | |