Spaces:
Sleeping
Sleeping
"""Affine 2D transformation matrix class. | |
The Transform class implements various transformation matrix operations, | |
both on the matrix itself, as well as on 2D coordinates. | |
Transform instances are effectively immutable: all methods that operate on the | |
transformation itself always return a new instance. This has as the | |
interesting side effect that Transform instances are hashable, ie. they can be | |
used as dictionary keys. | |
This module exports the following symbols: | |
Transform | |
this is the main class | |
Identity | |
Transform instance set to the identity transformation | |
Offset | |
Convenience function that returns a translating transformation | |
Scale | |
Convenience function that returns a scaling transformation | |
The DecomposedTransform class implements a transformation with separate | |
translate, rotation, scale, skew, and transformation-center components. | |
:Example: | |
>>> t = Transform(2, 0, 0, 3, 0, 0) | |
>>> t.transformPoint((100, 100)) | |
(200, 300) | |
>>> t = Scale(2, 3) | |
>>> t.transformPoint((100, 100)) | |
(200, 300) | |
>>> t.transformPoint((0, 0)) | |
(0, 0) | |
>>> t = Offset(2, 3) | |
>>> t.transformPoint((100, 100)) | |
(102, 103) | |
>>> t.transformPoint((0, 0)) | |
(2, 3) | |
>>> t2 = t.scale(0.5) | |
>>> t2.transformPoint((100, 100)) | |
(52.0, 53.0) | |
>>> import math | |
>>> t3 = t2.rotate(math.pi / 2) | |
>>> t3.transformPoint((0, 0)) | |
(2.0, 3.0) | |
>>> t3.transformPoint((100, 100)) | |
(-48.0, 53.0) | |
>>> t = Identity.scale(0.5).translate(100, 200).skew(0.1, 0.2) | |
>>> t.transformPoints([(0, 0), (1, 1), (100, 100)]) | |
[(50.0, 100.0), (50.550167336042726, 100.60135501775433), (105.01673360427253, 160.13550177543362)] | |
>>> | |
""" | |
import math | |
from typing import NamedTuple | |
from dataclasses import dataclass | |
__all__ = ["Transform", "Identity", "Offset", "Scale", "DecomposedTransform"] | |
_EPSILON = 1e-15 | |
_ONE_EPSILON = 1 - _EPSILON | |
_MINUS_ONE_EPSILON = -1 + _EPSILON | |
def _normSinCos(v): | |
if abs(v) < _EPSILON: | |
v = 0 | |
elif v > _ONE_EPSILON: | |
v = 1 | |
elif v < _MINUS_ONE_EPSILON: | |
v = -1 | |
return v | |
class Transform(NamedTuple): | |
"""2x2 transformation matrix plus offset, a.k.a. Affine transform. | |
Transform instances are immutable: all transforming methods, eg. | |
rotate(), return a new Transform instance. | |
:Example: | |
>>> t = Transform() | |
>>> t | |
<Transform [1 0 0 1 0 0]> | |
>>> t.scale(2) | |
<Transform [2 0 0 2 0 0]> | |
>>> t.scale(2.5, 5.5) | |
<Transform [2.5 0 0 5.5 0 0]> | |
>>> | |
>>> t.scale(2, 3).transformPoint((100, 100)) | |
(200, 300) | |
Transform's constructor takes six arguments, all of which are | |
optional, and can be used as keyword arguments:: | |
>>> Transform(12) | |
<Transform [12 0 0 1 0 0]> | |
>>> Transform(dx=12) | |
<Transform [1 0 0 1 12 0]> | |
>>> Transform(yx=12) | |
<Transform [1 0 12 1 0 0]> | |
Transform instances also behave like sequences of length 6:: | |
>>> len(Identity) | |
6 | |
>>> list(Identity) | |
[1, 0, 0, 1, 0, 0] | |
>>> tuple(Identity) | |
(1, 0, 0, 1, 0, 0) | |
Transform instances are comparable:: | |
>>> t1 = Identity.scale(2, 3).translate(4, 6) | |
>>> t2 = Identity.translate(8, 18).scale(2, 3) | |
>>> t1 == t2 | |
1 | |
But beware of floating point rounding errors:: | |
>>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6) | |
>>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3) | |
>>> t1 | |
<Transform [0.2 0 0 0.3 0.08 0.18]> | |
>>> t2 | |
<Transform [0.2 0 0 0.3 0.08 0.18]> | |
>>> t1 == t2 | |
0 | |
Transform instances are hashable, meaning you can use them as | |
keys in dictionaries:: | |
>>> d = {Scale(12, 13): None} | |
>>> d | |
{<Transform [12 0 0 13 0 0]>: None} | |
But again, beware of floating point rounding errors:: | |
>>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6) | |
>>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3) | |
>>> t1 | |
<Transform [0.2 0 0 0.3 0.08 0.18]> | |
>>> t2 | |
<Transform [0.2 0 0 0.3 0.08 0.18]> | |
>>> d = {t1: None} | |
>>> d | |
{<Transform [0.2 0 0 0.3 0.08 0.18]>: None} | |
>>> d[t2] | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in ? | |
KeyError: <Transform [0.2 0 0 0.3 0.08 0.18]> | |
""" | |
xx: float = 1 | |
xy: float = 0 | |
yx: float = 0 | |
yy: float = 1 | |
dx: float = 0 | |
dy: float = 0 | |
def transformPoint(self, p): | |
"""Transform a point. | |
:Example: | |
>>> t = Transform() | |
>>> t = t.scale(2.5, 5.5) | |
>>> t.transformPoint((100, 100)) | |
(250.0, 550.0) | |
""" | |
(x, y) = p | |
xx, xy, yx, yy, dx, dy = self | |
return (xx * x + yx * y + dx, xy * x + yy * y + dy) | |
def transformPoints(self, points): | |
"""Transform a list of points. | |
:Example: | |
>>> t = Scale(2, 3) | |
>>> t.transformPoints([(0, 0), (0, 100), (100, 100), (100, 0)]) | |
[(0, 0), (0, 300), (200, 300), (200, 0)] | |
>>> | |
""" | |
xx, xy, yx, yy, dx, dy = self | |
return [(xx * x + yx * y + dx, xy * x + yy * y + dy) for x, y in points] | |
def transformVector(self, v): | |
"""Transform an (dx, dy) vector, treating translation as zero. | |
:Example: | |
>>> t = Transform(2, 0, 0, 2, 10, 20) | |
>>> t.transformVector((3, -4)) | |
(6, -8) | |
>>> | |
""" | |
(dx, dy) = v | |
xx, xy, yx, yy = self[:4] | |
return (xx * dx + yx * dy, xy * dx + yy * dy) | |
def transformVectors(self, vectors): | |
"""Transform a list of (dx, dy) vector, treating translation as zero. | |
:Example: | |
>>> t = Transform(2, 0, 0, 2, 10, 20) | |
>>> t.transformVectors([(3, -4), (5, -6)]) | |
[(6, -8), (10, -12)] | |
>>> | |
""" | |
xx, xy, yx, yy = self[:4] | |
return [(xx * dx + yx * dy, xy * dx + yy * dy) for dx, dy in vectors] | |
def translate(self, x=0, y=0): | |
"""Return a new transformation, translated (offset) by x, y. | |
:Example: | |
>>> t = Transform() | |
>>> t.translate(20, 30) | |
<Transform [1 0 0 1 20 30]> | |
>>> | |
""" | |
return self.transform((1, 0, 0, 1, x, y)) | |
def scale(self, x=1, y=None): | |
"""Return a new transformation, scaled by x, y. The 'y' argument | |
may be None, which implies to use the x value for y as well. | |
:Example: | |
>>> t = Transform() | |
>>> t.scale(5) | |
<Transform [5 0 0 5 0 0]> | |
>>> t.scale(5, 6) | |
<Transform [5 0 0 6 0 0]> | |
>>> | |
""" | |
if y is None: | |
y = x | |
return self.transform((x, 0, 0, y, 0, 0)) | |
def rotate(self, angle): | |
"""Return a new transformation, rotated by 'angle' (radians). | |
:Example: | |
>>> import math | |
>>> t = Transform() | |
>>> t.rotate(math.pi / 2) | |
<Transform [0 1 -1 0 0 0]> | |
>>> | |
""" | |
import math | |
c = _normSinCos(math.cos(angle)) | |
s = _normSinCos(math.sin(angle)) | |
return self.transform((c, s, -s, c, 0, 0)) | |
def skew(self, x=0, y=0): | |
"""Return a new transformation, skewed by x and y. | |
:Example: | |
>>> import math | |
>>> t = Transform() | |
>>> t.skew(math.pi / 4) | |
<Transform [1 0 1 1 0 0]> | |
>>> | |
""" | |
import math | |
return self.transform((1, math.tan(y), math.tan(x), 1, 0, 0)) | |
def transform(self, other): | |
"""Return a new transformation, transformed by another | |
transformation. | |
:Example: | |
>>> t = Transform(2, 0, 0, 3, 1, 6) | |
>>> t.transform((4, 3, 2, 1, 5, 6)) | |
<Transform [8 9 4 3 11 24]> | |
>>> | |
""" | |
xx1, xy1, yx1, yy1, dx1, dy1 = other | |
xx2, xy2, yx2, yy2, dx2, dy2 = self | |
return self.__class__( | |
xx1 * xx2 + xy1 * yx2, | |
xx1 * xy2 + xy1 * yy2, | |
yx1 * xx2 + yy1 * yx2, | |
yx1 * xy2 + yy1 * yy2, | |
xx2 * dx1 + yx2 * dy1 + dx2, | |
xy2 * dx1 + yy2 * dy1 + dy2, | |
) | |
def reverseTransform(self, other): | |
"""Return a new transformation, which is the other transformation | |
transformed by self. self.reverseTransform(other) is equivalent to | |
other.transform(self). | |
:Example: | |
>>> t = Transform(2, 0, 0, 3, 1, 6) | |
>>> t.reverseTransform((4, 3, 2, 1, 5, 6)) | |
<Transform [8 6 6 3 21 15]> | |
>>> Transform(4, 3, 2, 1, 5, 6).transform((2, 0, 0, 3, 1, 6)) | |
<Transform [8 6 6 3 21 15]> | |
>>> | |
""" | |
xx1, xy1, yx1, yy1, dx1, dy1 = self | |
xx2, xy2, yx2, yy2, dx2, dy2 = other | |
return self.__class__( | |
xx1 * xx2 + xy1 * yx2, | |
xx1 * xy2 + xy1 * yy2, | |
yx1 * xx2 + yy1 * yx2, | |
yx1 * xy2 + yy1 * yy2, | |
xx2 * dx1 + yx2 * dy1 + dx2, | |
xy2 * dx1 + yy2 * dy1 + dy2, | |
) | |
def inverse(self): | |
"""Return the inverse transformation. | |
:Example: | |
>>> t = Identity.translate(2, 3).scale(4, 5) | |
>>> t.transformPoint((10, 20)) | |
(42, 103) | |
>>> it = t.inverse() | |
>>> it.transformPoint((42, 103)) | |
(10.0, 20.0) | |
>>> | |
""" | |
if self == Identity: | |
return self | |
xx, xy, yx, yy, dx, dy = self | |
det = xx * yy - yx * xy | |
xx, xy, yx, yy = yy / det, -xy / det, -yx / det, xx / det | |
dx, dy = -xx * dx - yx * dy, -xy * dx - yy * dy | |
return self.__class__(xx, xy, yx, yy, dx, dy) | |
def toPS(self): | |
"""Return a PostScript representation | |
:Example: | |
>>> t = Identity.scale(2, 3).translate(4, 5) | |
>>> t.toPS() | |
'[2 0 0 3 8 15]' | |
>>> | |
""" | |
return "[%s %s %s %s %s %s]" % self | |
def toDecomposed(self) -> "DecomposedTransform": | |
"""Decompose into a DecomposedTransform.""" | |
return DecomposedTransform.fromTransform(self) | |
def __bool__(self): | |
"""Returns True if transform is not identity, False otherwise. | |
:Example: | |
>>> bool(Identity) | |
False | |
>>> bool(Transform()) | |
False | |
>>> bool(Scale(1.)) | |
False | |
>>> bool(Scale(2)) | |
True | |
>>> bool(Offset()) | |
False | |
>>> bool(Offset(0)) | |
False | |
>>> bool(Offset(2)) | |
True | |
""" | |
return self != Identity | |
def __repr__(self): | |
return "<%s [%g %g %g %g %g %g]>" % ((self.__class__.__name__,) + self) | |
Identity = Transform() | |
def Offset(x=0, y=0): | |
"""Return the identity transformation offset by x, y. | |
:Example: | |
>>> Offset(2, 3) | |
<Transform [1 0 0 1 2 3]> | |
>>> | |
""" | |
return Transform(1, 0, 0, 1, x, y) | |
def Scale(x, y=None): | |
"""Return the identity transformation scaled by x, y. The 'y' argument | |
may be None, which implies to use the x value for y as well. | |
:Example: | |
>>> Scale(2, 3) | |
<Transform [2 0 0 3 0 0]> | |
>>> | |
""" | |
if y is None: | |
y = x | |
return Transform(x, 0, 0, y, 0, 0) | |
class DecomposedTransform: | |
"""The DecomposedTransform class implements a transformation with separate | |
translate, rotation, scale, skew, and transformation-center components. | |
""" | |
translateX: float = 0 | |
translateY: float = 0 | |
rotation: float = 0 # in degrees, counter-clockwise | |
scaleX: float = 1 | |
scaleY: float = 1 | |
skewX: float = 0 # in degrees, clockwise | |
skewY: float = 0 # in degrees, counter-clockwise | |
tCenterX: float = 0 | |
tCenterY: float = 0 | |
def __bool__(self): | |
return ( | |
self.translateX != 0 | |
or self.translateY != 0 | |
or self.rotation != 0 | |
or self.scaleX != 1 | |
or self.scaleY != 1 | |
or self.skewX != 0 | |
or self.skewY != 0 | |
or self.tCenterX != 0 | |
or self.tCenterY != 0 | |
) | |
def fromTransform(self, transform): | |
# Adapted from an answer on | |
# https://math.stackexchange.com/questions/13150/extracting-rotation-scale-values-from-2d-transformation-matrix | |
a, b, c, d, x, y = transform | |
sx = math.copysign(1, a) | |
if sx < 0: | |
a *= sx | |
b *= sx | |
delta = a * d - b * c | |
rotation = 0 | |
scaleX = scaleY = 0 | |
skewX = skewY = 0 | |
# Apply the QR-like decomposition. | |
if a != 0 or b != 0: | |
r = math.sqrt(a * a + b * b) | |
rotation = math.acos(a / r) if b >= 0 else -math.acos(a / r) | |
scaleX, scaleY = (r, delta / r) | |
skewX, skewY = (math.atan((a * c + b * d) / (r * r)), 0) | |
elif c != 0 or d != 0: | |
s = math.sqrt(c * c + d * d) | |
rotation = math.pi / 2 - ( | |
math.acos(-c / s) if d >= 0 else -math.acos(c / s) | |
) | |
scaleX, scaleY = (delta / s, s) | |
skewX, skewY = (0, math.atan((a * c + b * d) / (s * s))) | |
else: | |
# a = b = c = d = 0 | |
pass | |
return DecomposedTransform( | |
x, | |
y, | |
math.degrees(rotation), | |
scaleX * sx, | |
scaleY, | |
math.degrees(skewX) * sx, | |
math.degrees(skewY), | |
0, | |
0, | |
) | |
def toTransform(self): | |
"""Return the Transform() equivalent of this transformation. | |
:Example: | |
>>> DecomposedTransform(scaleX=2, scaleY=2).toTransform() | |
<Transform [2 0 0 2 0 0]> | |
>>> | |
""" | |
t = Transform() | |
t = t.translate( | |
self.translateX + self.tCenterX, self.translateY + self.tCenterY | |
) | |
t = t.rotate(math.radians(self.rotation)) | |
t = t.scale(self.scaleX, self.scaleY) | |
t = t.skew(math.radians(self.skewX), math.radians(self.skewY)) | |
t = t.translate(-self.tCenterX, -self.tCenterY) | |
return t | |
if __name__ == "__main__": | |
import sys | |
import doctest | |
sys.exit(doctest.testmod().failed) | |