Spaces:
Paused
Paused
| """Affine 2D transformation matrix class. | |
| The Transform class implements various transformation matrix operations, | |
| both on the matrix itself, as well as on 2D coordinates. | |
| Transform instances are effectively immutable: all methods that operate on the | |
| transformation itself always return a new instance. This has as the | |
| interesting side effect that Transform instances are hashable, ie. they can be | |
| used as dictionary keys. | |
| This module exports the following symbols: | |
| Transform | |
| this is the main class | |
| Identity | |
| Transform instance set to the identity transformation | |
| Offset | |
| Convenience function that returns a translating transformation | |
| Scale | |
| Convenience function that returns a scaling transformation | |
| The DecomposedTransform class implements a transformation with separate | |
| translate, rotation, scale, skew, and transformation-center components. | |
| :Example: | |
| >>> t = Transform(2, 0, 0, 3, 0, 0) | |
| >>> t.transformPoint((100, 100)) | |
| (200, 300) | |
| >>> t = Scale(2, 3) | |
| >>> t.transformPoint((100, 100)) | |
| (200, 300) | |
| >>> t.transformPoint((0, 0)) | |
| (0, 0) | |
| >>> t = Offset(2, 3) | |
| >>> t.transformPoint((100, 100)) | |
| (102, 103) | |
| >>> t.transformPoint((0, 0)) | |
| (2, 3) | |
| >>> t2 = t.scale(0.5) | |
| >>> t2.transformPoint((100, 100)) | |
| (52.0, 53.0) | |
| >>> import math | |
| >>> t3 = t2.rotate(math.pi / 2) | |
| >>> t3.transformPoint((0, 0)) | |
| (2.0, 3.0) | |
| >>> t3.transformPoint((100, 100)) | |
| (-48.0, 53.0) | |
| >>> t = Identity.scale(0.5).translate(100, 200).skew(0.1, 0.2) | |
| >>> t.transformPoints([(0, 0), (1, 1), (100, 100)]) | |
| [(50.0, 100.0), (50.550167336042726, 100.60135501775433), (105.01673360427253, 160.13550177543362)] | |
| >>> | |
| """ | |
| import math | |
| from typing import NamedTuple | |
| from dataclasses import dataclass | |
| __all__ = ["Transform", "Identity", "Offset", "Scale", "DecomposedTransform"] | |
| _EPSILON = 1e-15 | |
| _ONE_EPSILON = 1 - _EPSILON | |
| _MINUS_ONE_EPSILON = -1 + _EPSILON | |
| def _normSinCos(v): | |
| if abs(v) < _EPSILON: | |
| v = 0 | |
| elif v > _ONE_EPSILON: | |
| v = 1 | |
| elif v < _MINUS_ONE_EPSILON: | |
| v = -1 | |
| return v | |
| class Transform(NamedTuple): | |
| """2x2 transformation matrix plus offset, a.k.a. Affine transform. | |
| Transform instances are immutable: all transforming methods, eg. | |
| rotate(), return a new Transform instance. | |
| :Example: | |
| >>> t = Transform() | |
| >>> t | |
| <Transform [1 0 0 1 0 0]> | |
| >>> t.scale(2) | |
| <Transform [2 0 0 2 0 0]> | |
| >>> t.scale(2.5, 5.5) | |
| <Transform [2.5 0 0 5.5 0 0]> | |
| >>> | |
| >>> t.scale(2, 3).transformPoint((100, 100)) | |
| (200, 300) | |
| Transform's constructor takes six arguments, all of which are | |
| optional, and can be used as keyword arguments:: | |
| >>> Transform(12) | |
| <Transform [12 0 0 1 0 0]> | |
| >>> Transform(dx=12) | |
| <Transform [1 0 0 1 12 0]> | |
| >>> Transform(yx=12) | |
| <Transform [1 0 12 1 0 0]> | |
| Transform instances also behave like sequences of length 6:: | |
| >>> len(Identity) | |
| 6 | |
| >>> list(Identity) | |
| [1, 0, 0, 1, 0, 0] | |
| >>> tuple(Identity) | |
| (1, 0, 0, 1, 0, 0) | |
| Transform instances are comparable:: | |
| >>> t1 = Identity.scale(2, 3).translate(4, 6) | |
| >>> t2 = Identity.translate(8, 18).scale(2, 3) | |
| >>> t1 == t2 | |
| 1 | |
| But beware of floating point rounding errors:: | |
| >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6) | |
| >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3) | |
| >>> t1 | |
| <Transform [0.2 0 0 0.3 0.08 0.18]> | |
| >>> t2 | |
| <Transform [0.2 0 0 0.3 0.08 0.18]> | |
| >>> t1 == t2 | |
| 0 | |
| Transform instances are hashable, meaning you can use them as | |
| keys in dictionaries:: | |
| >>> d = {Scale(12, 13): None} | |
| >>> d | |
| {<Transform [12 0 0 13 0 0]>: None} | |
| But again, beware of floating point rounding errors:: | |
| >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6) | |
| >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3) | |
| >>> t1 | |
| <Transform [0.2 0 0 0.3 0.08 0.18]> | |
| >>> t2 | |
| <Transform [0.2 0 0 0.3 0.08 0.18]> | |
| >>> d = {t1: None} | |
| >>> d | |
| {<Transform [0.2 0 0 0.3 0.08 0.18]>: None} | |
| >>> d[t2] | |
| Traceback (most recent call last): | |
| File "<stdin>", line 1, in ? | |
| KeyError: <Transform [0.2 0 0 0.3 0.08 0.18]> | |
| """ | |
| xx: float = 1 | |
| xy: float = 0 | |
| yx: float = 0 | |
| yy: float = 1 | |
| dx: float = 0 | |
| dy: float = 0 | |
| def transformPoint(self, p): | |
| """Transform a point. | |
| :Example: | |
| >>> t = Transform() | |
| >>> t = t.scale(2.5, 5.5) | |
| >>> t.transformPoint((100, 100)) | |
| (250.0, 550.0) | |
| """ | |
| (x, y) = p | |
| xx, xy, yx, yy, dx, dy = self | |
| return (xx * x + yx * y + dx, xy * x + yy * y + dy) | |
| def transformPoints(self, points): | |
| """Transform a list of points. | |
| :Example: | |
| >>> t = Scale(2, 3) | |
| >>> t.transformPoints([(0, 0), (0, 100), (100, 100), (100, 0)]) | |
| [(0, 0), (0, 300), (200, 300), (200, 0)] | |
| >>> | |
| """ | |
| xx, xy, yx, yy, dx, dy = self | |
| return [(xx * x + yx * y + dx, xy * x + yy * y + dy) for x, y in points] | |
| def transformVector(self, v): | |
| """Transform an (dx, dy) vector, treating translation as zero. | |
| :Example: | |
| >>> t = Transform(2, 0, 0, 2, 10, 20) | |
| >>> t.transformVector((3, -4)) | |
| (6, -8) | |
| >>> | |
| """ | |
| (dx, dy) = v | |
| xx, xy, yx, yy = self[:4] | |
| return (xx * dx + yx * dy, xy * dx + yy * dy) | |
| def transformVectors(self, vectors): | |
| """Transform a list of (dx, dy) vector, treating translation as zero. | |
| :Example: | |
| >>> t = Transform(2, 0, 0, 2, 10, 20) | |
| >>> t.transformVectors([(3, -4), (5, -6)]) | |
| [(6, -8), (10, -12)] | |
| >>> | |
| """ | |
| xx, xy, yx, yy = self[:4] | |
| return [(xx * dx + yx * dy, xy * dx + yy * dy) for dx, dy in vectors] | |
| def translate(self, x=0, y=0): | |
| """Return a new transformation, translated (offset) by x, y. | |
| :Example: | |
| >>> t = Transform() | |
| >>> t.translate(20, 30) | |
| <Transform [1 0 0 1 20 30]> | |
| >>> | |
| """ | |
| return self.transform((1, 0, 0, 1, x, y)) | |
| def scale(self, x=1, y=None): | |
| """Return a new transformation, scaled by x, y. The 'y' argument | |
| may be None, which implies to use the x value for y as well. | |
| :Example: | |
| >>> t = Transform() | |
| >>> t.scale(5) | |
| <Transform [5 0 0 5 0 0]> | |
| >>> t.scale(5, 6) | |
| <Transform [5 0 0 6 0 0]> | |
| >>> | |
| """ | |
| if y is None: | |
| y = x | |
| return self.transform((x, 0, 0, y, 0, 0)) | |
| def rotate(self, angle): | |
| """Return a new transformation, rotated by 'angle' (radians). | |
| :Example: | |
| >>> import math | |
| >>> t = Transform() | |
| >>> t.rotate(math.pi / 2) | |
| <Transform [0 1 -1 0 0 0]> | |
| >>> | |
| """ | |
| import math | |
| c = _normSinCos(math.cos(angle)) | |
| s = _normSinCos(math.sin(angle)) | |
| return self.transform((c, s, -s, c, 0, 0)) | |
| def skew(self, x=0, y=0): | |
| """Return a new transformation, skewed by x and y. | |
| :Example: | |
| >>> import math | |
| >>> t = Transform() | |
| >>> t.skew(math.pi / 4) | |
| <Transform [1 0 1 1 0 0]> | |
| >>> | |
| """ | |
| import math | |
| return self.transform((1, math.tan(y), math.tan(x), 1, 0, 0)) | |
| def transform(self, other): | |
| """Return a new transformation, transformed by another | |
| transformation. | |
| :Example: | |
| >>> t = Transform(2, 0, 0, 3, 1, 6) | |
| >>> t.transform((4, 3, 2, 1, 5, 6)) | |
| <Transform [8 9 4 3 11 24]> | |
| >>> | |
| """ | |
| xx1, xy1, yx1, yy1, dx1, dy1 = other | |
| xx2, xy2, yx2, yy2, dx2, dy2 = self | |
| return self.__class__( | |
| xx1 * xx2 + xy1 * yx2, | |
| xx1 * xy2 + xy1 * yy2, | |
| yx1 * xx2 + yy1 * yx2, | |
| yx1 * xy2 + yy1 * yy2, | |
| xx2 * dx1 + yx2 * dy1 + dx2, | |
| xy2 * dx1 + yy2 * dy1 + dy2, | |
| ) | |
| def reverseTransform(self, other): | |
| """Return a new transformation, which is the other transformation | |
| transformed by self. self.reverseTransform(other) is equivalent to | |
| other.transform(self). | |
| :Example: | |
| >>> t = Transform(2, 0, 0, 3, 1, 6) | |
| >>> t.reverseTransform((4, 3, 2, 1, 5, 6)) | |
| <Transform [8 6 6 3 21 15]> | |
| >>> Transform(4, 3, 2, 1, 5, 6).transform((2, 0, 0, 3, 1, 6)) | |
| <Transform [8 6 6 3 21 15]> | |
| >>> | |
| """ | |
| xx1, xy1, yx1, yy1, dx1, dy1 = self | |
| xx2, xy2, yx2, yy2, dx2, dy2 = other | |
| return self.__class__( | |
| xx1 * xx2 + xy1 * yx2, | |
| xx1 * xy2 + xy1 * yy2, | |
| yx1 * xx2 + yy1 * yx2, | |
| yx1 * xy2 + yy1 * yy2, | |
| xx2 * dx1 + yx2 * dy1 + dx2, | |
| xy2 * dx1 + yy2 * dy1 + dy2, | |
| ) | |
| def inverse(self): | |
| """Return the inverse transformation. | |
| :Example: | |
| >>> t = Identity.translate(2, 3).scale(4, 5) | |
| >>> t.transformPoint((10, 20)) | |
| (42, 103) | |
| >>> it = t.inverse() | |
| >>> it.transformPoint((42, 103)) | |
| (10.0, 20.0) | |
| >>> | |
| """ | |
| if self == Identity: | |
| return self | |
| xx, xy, yx, yy, dx, dy = self | |
| det = xx * yy - yx * xy | |
| xx, xy, yx, yy = yy / det, -xy / det, -yx / det, xx / det | |
| dx, dy = -xx * dx - yx * dy, -xy * dx - yy * dy | |
| return self.__class__(xx, xy, yx, yy, dx, dy) | |
| def toPS(self): | |
| """Return a PostScript representation | |
| :Example: | |
| >>> t = Identity.scale(2, 3).translate(4, 5) | |
| >>> t.toPS() | |
| '[2 0 0 3 8 15]' | |
| >>> | |
| """ | |
| return "[%s %s %s %s %s %s]" % self | |
| def toDecomposed(self) -> "DecomposedTransform": | |
| """Decompose into a DecomposedTransform.""" | |
| return DecomposedTransform.fromTransform(self) | |
| def __bool__(self): | |
| """Returns True if transform is not identity, False otherwise. | |
| :Example: | |
| >>> bool(Identity) | |
| False | |
| >>> bool(Transform()) | |
| False | |
| >>> bool(Scale(1.)) | |
| False | |
| >>> bool(Scale(2)) | |
| True | |
| >>> bool(Offset()) | |
| False | |
| >>> bool(Offset(0)) | |
| False | |
| >>> bool(Offset(2)) | |
| True | |
| """ | |
| return self != Identity | |
| def __repr__(self): | |
| return "<%s [%g %g %g %g %g %g]>" % ((self.__class__.__name__,) + self) | |
| Identity = Transform() | |
| def Offset(x=0, y=0): | |
| """Return the identity transformation offset by x, y. | |
| :Example: | |
| >>> Offset(2, 3) | |
| <Transform [1 0 0 1 2 3]> | |
| >>> | |
| """ | |
| return Transform(1, 0, 0, 1, x, y) | |
| def Scale(x, y=None): | |
| """Return the identity transformation scaled by x, y. The 'y' argument | |
| may be None, which implies to use the x value for y as well. | |
| :Example: | |
| >>> Scale(2, 3) | |
| <Transform [2 0 0 3 0 0]> | |
| >>> | |
| """ | |
| if y is None: | |
| y = x | |
| return Transform(x, 0, 0, y, 0, 0) | |
| class DecomposedTransform: | |
| """The DecomposedTransform class implements a transformation with separate | |
| translate, rotation, scale, skew, and transformation-center components. | |
| """ | |
| translateX: float = 0 | |
| translateY: float = 0 | |
| rotation: float = 0 # in degrees, counter-clockwise | |
| scaleX: float = 1 | |
| scaleY: float = 1 | |
| skewX: float = 0 # in degrees, clockwise | |
| skewY: float = 0 # in degrees, counter-clockwise | |
| tCenterX: float = 0 | |
| tCenterY: float = 0 | |
| def __bool__(self): | |
| return ( | |
| self.translateX != 0 | |
| or self.translateY != 0 | |
| or self.rotation != 0 | |
| or self.scaleX != 1 | |
| or self.scaleY != 1 | |
| or self.skewX != 0 | |
| or self.skewY != 0 | |
| or self.tCenterX != 0 | |
| or self.tCenterY != 0 | |
| ) | |
| def fromTransform(self, transform): | |
| # Adapted from an answer on | |
| # https://math.stackexchange.com/questions/13150/extracting-rotation-scale-values-from-2d-transformation-matrix | |
| a, b, c, d, x, y = transform | |
| sx = math.copysign(1, a) | |
| if sx < 0: | |
| a *= sx | |
| b *= sx | |
| delta = a * d - b * c | |
| rotation = 0 | |
| scaleX = scaleY = 0 | |
| skewX = skewY = 0 | |
| # Apply the QR-like decomposition. | |
| if a != 0 or b != 0: | |
| r = math.sqrt(a * a + b * b) | |
| rotation = math.acos(a / r) if b >= 0 else -math.acos(a / r) | |
| scaleX, scaleY = (r, delta / r) | |
| skewX, skewY = (math.atan((a * c + b * d) / (r * r)), 0) | |
| elif c != 0 or d != 0: | |
| s = math.sqrt(c * c + d * d) | |
| rotation = math.pi / 2 - ( | |
| math.acos(-c / s) if d >= 0 else -math.acos(c / s) | |
| ) | |
| scaleX, scaleY = (delta / s, s) | |
| skewX, skewY = (0, math.atan((a * c + b * d) / (s * s))) | |
| else: | |
| # a = b = c = d = 0 | |
| pass | |
| return DecomposedTransform( | |
| x, | |
| y, | |
| math.degrees(rotation), | |
| scaleX * sx, | |
| scaleY, | |
| math.degrees(skewX) * sx, | |
| math.degrees(skewY), | |
| 0, | |
| 0, | |
| ) | |
| def toTransform(self): | |
| """Return the Transform() equivalent of this transformation. | |
| :Example: | |
| >>> DecomposedTransform(scaleX=2, scaleY=2).toTransform() | |
| <Transform [2 0 0 2 0 0]> | |
| >>> | |
| """ | |
| t = Transform() | |
| t = t.translate( | |
| self.translateX + self.tCenterX, self.translateY + self.tCenterY | |
| ) | |
| t = t.rotate(math.radians(self.rotation)) | |
| t = t.scale(self.scaleX, self.scaleY) | |
| t = t.skew(math.radians(self.skewX), math.radians(self.skewY)) | |
| t = t.translate(-self.tCenterX, -self.tCenterY) | |
| return t | |
| if __name__ == "__main__": | |
| import sys | |
| import doctest | |
| sys.exit(doctest.testmod().failed) | |