File size: 126,997 Bytes
7d134e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
# coding=utf-8
# Copyright 2023-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Related resources:
#    https://huggingface.co/tasks
#    https://huggingface.co/docs/huggingface.js/inference/README
#    https://github.com/huggingface/huggingface.js/tree/main/packages/inference/src
#    https://github.com/huggingface/text-generation-inference/tree/main/clients/python
#    https://github.com/huggingface/text-generation-inference/blob/main/clients/python/text_generation/client.py
#    https://huggingface.slack.com/archives/C03E4DQ9LAJ/p1680169099087869
#    https://github.com/huggingface/unity-api#tasks
#
# Some TODO:
# - add all tasks
#
# NOTE: the philosophy of this client is "let's make it as easy as possible to use it, even if less optimized". Some
# examples of how it translates:
# - Timeout / Server unavailable is handled by the client in a single "timeout" parameter.
# - Files can be provided as bytes, file paths, or URLs and the client will try to "guess" the type.
# - Images are parsed as PIL.Image for easier manipulation.
# - Provides a "recommended model" for each task => suboptimal but user-wise quicker to get a first script running.
# - Only the main parameters are publicly exposed. Power users can always read the docs for more options.
import base64
import logging
import re
import time
import warnings
from typing import (
    TYPE_CHECKING,
    Any,
    Dict,
    Iterable,
    List,
    Literal,
    Optional,
    Union,
    overload,
)

from requests import HTTPError
from requests.structures import CaseInsensitiveDict

from huggingface_hub.constants import ALL_INFERENCE_API_FRAMEWORKS, INFERENCE_ENDPOINT, MAIN_INFERENCE_API_FRAMEWORKS
from huggingface_hub.errors import BadRequestError, InferenceTimeoutError
from huggingface_hub.inference._common import (
    TASKS_EXPECTING_IMAGES,
    ContentT,
    ModelStatus,
    _b64_encode,
    _b64_to_image,
    _bytes_to_dict,
    _bytes_to_image,
    _bytes_to_list,
    _fetch_recommended_models,
    _get_unsupported_text_generation_kwargs,
    _import_numpy,
    _open_as_binary,
    _set_unsupported_text_generation_kwargs,
    _stream_chat_completion_response,
    _stream_text_generation_response,
    raise_text_generation_error,
)
from huggingface_hub.inference._generated.types import (
    AudioClassificationOutputElement,
    AudioToAudioOutputElement,
    AutomaticSpeechRecognitionOutput,
    ChatCompletionInputGrammarType,
    ChatCompletionInputTool,
    ChatCompletionInputToolTypeClass,
    ChatCompletionOutput,
    ChatCompletionStreamOutput,
    DocumentQuestionAnsweringOutputElement,
    FillMaskOutputElement,
    ImageClassificationOutputElement,
    ImageSegmentationOutputElement,
    ImageToTextOutput,
    ObjectDetectionOutputElement,
    QuestionAnsweringOutputElement,
    SummarizationOutput,
    TableQuestionAnsweringOutputElement,
    TextClassificationOutputElement,
    TextGenerationInputGrammarType,
    TextGenerationOutput,
    TextGenerationStreamOutput,
    TokenClassificationOutputElement,
    TranslationOutput,
    VisualQuestionAnsweringOutputElement,
    ZeroShotClassificationOutputElement,
    ZeroShotImageClassificationOutputElement,
)
from huggingface_hub.utils import (
    build_hf_headers,
    get_session,
    hf_raise_for_status,
)
from huggingface_hub.utils._deprecation import _deprecate_positional_args


if TYPE_CHECKING:
    import numpy as np
    from PIL.Image import Image

logger = logging.getLogger(__name__)


MODEL_KWARGS_NOT_USED_REGEX = re.compile(r"The following `model_kwargs` are not used by the model: \[(.*?)\]")


class InferenceClient:
    """
    Initialize a new Inference Client.

    [`InferenceClient`] aims to provide a unified experience to perform inference. The client can be used
    seamlessly with either the (free) Inference API or self-hosted Inference Endpoints.

    Args:
        model (`str`, `optional`):
            The model to run inference with. Can be a model id hosted on the Hugging Face Hub, e.g. `meta-llama/Meta-Llama-3-8B-Instruct`
            or a URL to a deployed Inference Endpoint. Defaults to None, in which case a recommended model is
            automatically selected for the task.
            Note: for better compatibility with OpenAI's client, `model` has been aliased as `base_url`. Those 2
            arguments are mutually exclusive. If using `base_url` for chat completion, the `/chat/completions` suffix
            path will be appended to the base URL (see the [TGI Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api)
            documentation for details). When passing a URL as `model`, the client will not append any suffix path to it.
        token (`str` or `bool`, *optional*):
            Hugging Face token. Will default to the locally saved token if not provided.
            Pass `token=False` if you don't want to send your token to the server.
            Note: for better compatibility with OpenAI's client, `token` has been aliased as `api_key`. Those 2
            arguments are mutually exclusive and have the exact same behavior.
        timeout (`float`, `optional`):
            The maximum number of seconds to wait for a response from the server. Loading a new model in Inference
            API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.
        headers (`Dict[str, str]`, `optional`):
            Additional headers to send to the server. By default only the authorization and user-agent headers are sent.
            Values in this dictionary will override the default values.
        cookies (`Dict[str, str]`, `optional`):
            Additional cookies to send to the server.
        proxies (`Any`, `optional`):
            Proxies to use for the request.
        base_url (`str`, `optional`):
            Base URL to run inference. This is a duplicated argument from `model` to make [`InferenceClient`]
            follow the same pattern as `openai.OpenAI` client. Cannot be used if `model` is set. Defaults to None.
        api_key (`str`, `optional`):
            Token to use for authentication. This is a duplicated argument from `token` to make [`InferenceClient`]
            follow the same pattern as `openai.OpenAI` client. Cannot be used if `token` is set. Defaults to None.
    """

    @_deprecate_positional_args(version="0.26")
    def __init__(
        self,
        model: Optional[str] = None,
        *,
        token: Union[str, bool, None] = None,
        timeout: Optional[float] = None,
        headers: Optional[Dict[str, str]] = None,
        cookies: Optional[Dict[str, str]] = None,
        proxies: Optional[Any] = None,
        # OpenAI compatibility
        base_url: Optional[str] = None,
        api_key: Optional[str] = None,
    ) -> None:
        if model is not None and base_url is not None:
            raise ValueError(
                "Received both `model` and `base_url` arguments. Please provide only one of them."
                " `base_url` is an alias for `model` to make the API compatible with OpenAI's client."
                " If using `base_url` for chat completion, the `/chat/completions` suffix path will be appended to the base url."
                " When passing a URL as `model`, the client will not append any suffix path to it."
            )
        if token is not None and api_key is not None:
            raise ValueError(
                "Received both `token` and `api_key` arguments. Please provide only one of them."
                " `api_key` is an alias for `token` to make the API compatible with OpenAI's client."
                " It has the exact same behavior as `token`."
            )

        self.model: Optional[str] = model
        self.token: Union[str, bool, None] = token if token is not None else api_key
        self.headers = CaseInsensitiveDict(build_hf_headers(token=self.token))  # 'authorization' + 'user-agent'
        if headers is not None:
            self.headers.update(headers)
        self.cookies = cookies
        self.timeout = timeout
        self.proxies = proxies

        # OpenAI compatibility
        self.base_url = base_url

    def __repr__(self):
        return f"<InferenceClient(model='{self.model if self.model else ''}', timeout={self.timeout})>"

    @overload
    def post(  # type: ignore[misc]
        self,
        *,
        json: Optional[Union[str, Dict, List]] = None,
        data: Optional[ContentT] = None,
        model: Optional[str] = None,
        task: Optional[str] = None,
        stream: Literal[False] = ...,
    ) -> bytes: ...

    @overload
    def post(  # type: ignore[misc]
        self,
        *,
        json: Optional[Union[str, Dict, List]] = None,
        data: Optional[ContentT] = None,
        model: Optional[str] = None,
        task: Optional[str] = None,
        stream: Literal[True] = ...,
    ) -> Iterable[bytes]: ...

    @overload
    def post(
        self,
        *,
        json: Optional[Union[str, Dict, List]] = None,
        data: Optional[ContentT] = None,
        model: Optional[str] = None,
        task: Optional[str] = None,
        stream: bool = False,
    ) -> Union[bytes, Iterable[bytes]]: ...

    def post(
        self,
        *,
        json: Optional[Union[str, Dict, List]] = None,
        data: Optional[ContentT] = None,
        model: Optional[str] = None,
        task: Optional[str] = None,
        stream: bool = False,
    ) -> Union[bytes, Iterable[bytes]]:
        """
        Make a POST request to the inference server.

        Args:
            json (`Union[str, Dict, List]`, *optional*):
                The JSON data to send in the request body, specific to each task. Defaults to None.
            data (`Union[str, Path, bytes, BinaryIO]`, *optional*):
                The content to send in the request body, specific to each task.
                It can be raw bytes, a pointer to an opened file, a local file path,
                or a URL to an online resource (image, audio file,...). If both `json` and `data` are passed,
                `data` will take precedence. At least `json` or `data` must be provided. Defaults to None.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. Will override the model defined at the instance level. Defaults to None.
            task (`str`, *optional*):
                The task to perform on the inference. All available tasks can be found
                [here](https://huggingface.co/tasks). Used only to default to a recommended model if `model` is not
                provided. At least `model` or `task` must be provided. Defaults to None.
            stream (`bool`, *optional*):
                Whether to iterate over streaming APIs.

        Returns:
            bytes: The raw bytes returned by the server.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.
        """
        url = self._resolve_url(model, task)

        if data is not None and json is not None:
            warnings.warn("Ignoring `json` as `data` is passed as binary.")

        # Set Accept header if relevant
        headers = self.headers.copy()
        if task in TASKS_EXPECTING_IMAGES and "Accept" not in headers:
            headers["Accept"] = "image/png"

        t0 = time.time()
        timeout = self.timeout
        while True:
            with _open_as_binary(data) as data_as_binary:
                try:
                    response = get_session().post(
                        url,
                        json=json,
                        data=data_as_binary,
                        headers=headers,
                        cookies=self.cookies,
                        timeout=self.timeout,
                        stream=stream,
                        proxies=self.proxies,
                    )
                except TimeoutError as error:
                    # Convert any `TimeoutError` to a `InferenceTimeoutError`
                    raise InferenceTimeoutError(f"Inference call timed out: {url}") from error  # type: ignore

            try:
                hf_raise_for_status(response)
                return response.iter_lines() if stream else response.content
            except HTTPError as error:
                if error.response.status_code == 422 and task is not None:
                    error.args = (
                        f"{error.args[0]}\nMake sure '{task}' task is supported by the model.",
                    ) + error.args[1:]
                if error.response.status_code == 503:
                    # If Model is unavailable, either raise a TimeoutError...
                    if timeout is not None and time.time() - t0 > timeout:
                        raise InferenceTimeoutError(
                            f"Model not loaded on the server: {url}. Please retry with a higher timeout (current:"
                            f" {self.timeout}).",
                            request=error.request,
                            response=error.response,
                        ) from error
                    # ...or wait 1s and retry
                    logger.info(f"Waiting for model to be loaded on the server: {error}")
                    time.sleep(1)
                    if "X-wait-for-model" not in headers and url.startswith(INFERENCE_ENDPOINT):
                        headers["X-wait-for-model"] = "1"
                    if timeout is not None:
                        timeout = max(self.timeout - (time.time() - t0), 1)  # type: ignore
                    continue
                raise

    def audio_classification(
        self,
        audio: ContentT,
        *,
        model: Optional[str] = None,
    ) -> List[AudioClassificationOutputElement]:
        """
        Perform audio classification on the provided audio content.

        Args:
            audio (Union[str, Path, bytes, BinaryIO]):
                The audio content to classify. It can be raw audio bytes, a local audio file, or a URL pointing to an
                audio file.
            model (`str`, *optional*):
                The model to use for audio classification. Can be a model ID hosted on the Hugging Face Hub
                or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for
                audio classification will be used.

        Returns:
            `List[AudioClassificationOutputElement]`: List of [`AudioClassificationOutputElement`] items containing the predicted labels and their confidence.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.audio_classification("audio.flac")
        [
            AudioClassificationOutputElement(score=0.4976358711719513, label='hap'),
            AudioClassificationOutputElement(score=0.3677836060523987, label='neu'),
            ...
        ]
        ```
        """
        response = self.post(data=audio, model=model, task="audio-classification")
        return AudioClassificationOutputElement.parse_obj_as_list(response)

    def audio_to_audio(
        self,
        audio: ContentT,
        *,
        model: Optional[str] = None,
    ) -> List[AudioToAudioOutputElement]:
        """
        Performs multiple tasks related to audio-to-audio depending on the model (eg: speech enhancement, source separation).

        Args:
            audio (Union[str, Path, bytes, BinaryIO]):
                The audio content for the model. It can be raw audio bytes, a local audio file, or a URL pointing to an
                audio file.
            model (`str`, *optional*):
                The model can be any model which takes an audio file and returns another audio file. Can be a model ID hosted on the Hugging Face Hub
                or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for
                audio_to_audio will be used.

        Returns:
            `List[AudioToAudioOutputElement]`: A list of [`AudioToAudioOutputElement`] items containing audios label, content-type, and audio content in blob.

        Raises:
            `InferenceTimeoutError`:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> audio_output = client.audio_to_audio("audio.flac")
        >>> for i, item in enumerate(audio_output):
        >>>     with open(f"output_{i}.flac", "wb") as f:
                    f.write(item.blob)
        ```
        """
        response = self.post(data=audio, model=model, task="audio-to-audio")
        audio_output = AudioToAudioOutputElement.parse_obj_as_list(response)
        for item in audio_output:
            item.blob = base64.b64decode(item.blob)
        return audio_output

    def automatic_speech_recognition(
        self,
        audio: ContentT,
        *,
        model: Optional[str] = None,
    ) -> AutomaticSpeechRecognitionOutput:
        """
        Perform automatic speech recognition (ASR or audio-to-text) on the given audio content.

        Args:
            audio (Union[str, Path, bytes, BinaryIO]):
                The content to transcribe. It can be raw audio bytes, local audio file, or a URL to an audio file.
            model (`str`, *optional*):
                The model to use for ASR. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. If not provided, the default recommended model for ASR will be used.

        Returns:
            [`AutomaticSpeechRecognitionOutput`]: An item containing the transcribed text and optionally the timestamp chunks.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.automatic_speech_recognition("hello_world.flac").text
        "hello world"
        ```
        """
        response = self.post(data=audio, model=model, task="automatic-speech-recognition")
        return AutomaticSpeechRecognitionOutput.parse_obj_as_instance(response)

    @overload
    def chat_completion(  # type: ignore
        self,
        messages: List[Dict[str, str]],
        *,
        model: Optional[str] = None,
        stream: Literal[False] = False,
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        response_format: Optional[ChatCompletionInputGrammarType] = None,
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        tool_choice: Optional[Union[ChatCompletionInputToolTypeClass, str]] = None,
        tool_prompt: Optional[str] = None,
        tools: Optional[List[ChatCompletionInputTool]] = None,
        top_logprobs: Optional[int] = None,
        top_p: Optional[float] = None,
    ) -> ChatCompletionOutput: ...

    @overload
    def chat_completion(  # type: ignore
        self,
        messages: List[Dict[str, str]],
        *,
        model: Optional[str] = None,
        stream: Literal[True] = True,
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        response_format: Optional[ChatCompletionInputGrammarType] = None,
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        tool_choice: Optional[Union[ChatCompletionInputToolTypeClass, str]] = None,
        tool_prompt: Optional[str] = None,
        tools: Optional[List[ChatCompletionInputTool]] = None,
        top_logprobs: Optional[int] = None,
        top_p: Optional[float] = None,
    ) -> Iterable[ChatCompletionStreamOutput]: ...

    @overload
    def chat_completion(
        self,
        messages: List[Dict[str, str]],
        *,
        model: Optional[str] = None,
        stream: bool = False,
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        response_format: Optional[ChatCompletionInputGrammarType] = None,
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        tool_choice: Optional[Union[ChatCompletionInputToolTypeClass, str]] = None,
        tool_prompt: Optional[str] = None,
        tools: Optional[List[ChatCompletionInputTool]] = None,
        top_logprobs: Optional[int] = None,
        top_p: Optional[float] = None,
    ) -> Union[ChatCompletionOutput, Iterable[ChatCompletionStreamOutput]]: ...

    def chat_completion(
        self,
        messages: List[Dict[str, str]],
        *,
        model: Optional[str] = None,
        stream: bool = False,
        # Parameters from ChatCompletionInput (handled manually)
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        response_format: Optional[ChatCompletionInputGrammarType] = None,
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        tool_choice: Optional[Union[ChatCompletionInputToolTypeClass, str]] = None,
        tool_prompt: Optional[str] = None,
        tools: Optional[List[ChatCompletionInputTool]] = None,
        top_logprobs: Optional[int] = None,
        top_p: Optional[float] = None,
    ) -> Union[ChatCompletionOutput, Iterable[ChatCompletionStreamOutput]]:
        """
        A method for completing conversations using a specified language model.

        <Tip>

        The `client.chat_completion` method is aliased as `client.chat.completions.create` for compatibility with OpenAI's client.
        Inputs and outputs are strictly the same and using either syntax will yield the same results.
        Check out the [Inference guide](https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility)
        for more details about OpenAI's compatibility.

        </Tip>

        Args:
            messages (List[Union[`SystemMessage`, `UserMessage`, `AssistantMessage`]]):
                Conversation history consisting of roles and content pairs.
            model (`str`, *optional*):
                The model to use for chat-completion. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. If not provided, the default recommended model for chat-based text-generation will be used.
                See https://huggingface.co/tasks/text-generation for more details.

                If `model` is a model ID, it is passed to the server as the `model` parameter. If you want to define a
                custom URL while setting `model` in the request payload, you must set `base_url` when initializing [`InferenceClient`].
            frequency_penalty (`float`, *optional*):
                Penalizes new tokens based on their existing frequency
                in the text so far. Range: [-2.0, 2.0]. Defaults to 0.0.
            logit_bias (`List[float]`, *optional*):
                Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
                (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
                the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
                but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
                result in a ban or exclusive selection of the relevant token. Defaults to None.
            logprobs (`bool`, *optional*):
                Whether to return log probabilities of the output tokens or not. If true, returns the log
                probabilities of each output token returned in the content of message.
            max_tokens (`int`, *optional*):
                Maximum number of tokens allowed in the response. Defaults to 20.
            n (`int`, *optional*):
                UNUSED.
            presence_penalty (`float`, *optional*):
                Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the
                text so far, increasing the model's likelihood to talk about new topics.
            response_format ([`ChatCompletionInputGrammarType`], *optional*):
                Grammar constraints. Can be either a JSONSchema or a regex.
            seed (Optional[`int`], *optional*):
                Seed for reproducible control flow. Defaults to None.
            stop (Optional[`str`], *optional*):
                Up to four strings which trigger the end of the response.
                Defaults to None.
            stream (`bool`, *optional*):
                Enable realtime streaming of responses. Defaults to False.
            temperature (`float`, *optional*):
                Controls randomness of the generations. Lower values ensure
                less random completions. Range: [0, 2]. Defaults to 1.0.
            top_logprobs (`int`, *optional*):
                An integer between 0 and 5 specifying the number of most likely tokens to return at each token
                position, each with an associated log probability. logprobs must be set to true if this parameter is
                used.
            top_p (`float`, *optional*):
                Fraction of the most likely next words to sample from.
                Must be between 0 and 1. Defaults to 1.0.
            tool_choice ([`ChatCompletionInputToolTypeClass`] or `str`, *optional*):
                The tool to use for the completion. Defaults to "auto".
            tool_prompt (`str`, *optional*):
                A prompt to be appended before the tools.
            tools (List of [`ChatCompletionInputTool`], *optional*):
                A list of tools the model may call. Currently, only functions are supported as a tool. Use this to
                provide a list of functions the model may generate JSON inputs for.

        Returns:
            [`ChatCompletionOutput`] or Iterable of [`ChatCompletionStreamOutput`]:
            Generated text returned from the server:
            - if `stream=False`, the generated text is returned as a [`ChatCompletionOutput`] (default).
            - if `stream=True`, the generated text is returned token by token as a sequence of [`ChatCompletionStreamOutput`].

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:

        ```py
        >>> from huggingface_hub import InferenceClient
        >>> messages = [{"role": "user", "content": "What is the capital of France?"}]
        >>> client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
        >>> client.chat_completion(messages, max_tokens=100)
        ChatCompletionOutput(
            choices=[
                ChatCompletionOutputComplete(
                    finish_reason='eos_token',
                    index=0,
                    message=ChatCompletionOutputMessage(
                        role='assistant',
                        content='The capital of France is Paris.',
                        name=None,
                        tool_calls=None
                    ),
                    logprobs=None
                )
            ],
            created=1719907176,
            id='',
            model='meta-llama/Meta-Llama-3-8B-Instruct',
            object='text_completion',
            system_fingerprint='2.0.4-sha-f426a33',
            usage=ChatCompletionOutputUsage(
                completion_tokens=8,
                prompt_tokens=17,
                total_tokens=25
            )
        )
        ```

        Example (stream=True):
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> messages = [{"role": "user", "content": "What is the capital of France?"}]
        >>> client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
        >>> for token in client.chat_completion(messages, max_tokens=10, stream=True):
        ...     print(token)
        ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content='The', role='assistant'), index=0, finish_reason=None)], created=1710498504)
        ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content=' capital', role='assistant'), index=0, finish_reason=None)], created=1710498504)
        (...)
        ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content=' may', role='assistant'), index=0, finish_reason=None)], created=1710498504)
        ```

        Example using OpenAI's syntax:
        ```py
        # instead of `from openai import OpenAI`
        from huggingface_hub import InferenceClient

        # instead of `client = OpenAI(...)`
        client = InferenceClient(
            base_url=...,
            api_key=...,
        )

        output = client.chat.completions.create(
            model="meta-llama/Meta-Llama-3-8B-Instruct",
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Count to 10"},
            ],
            stream=True,
            max_tokens=1024,
        )

        for chunk in output:
            print(chunk.choices[0].delta.content)
        ```

        Example using tools:
        ```py
        >>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
        >>> messages = [
        ...     {
        ...         "role": "system",
        ...         "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
        ...     },
        ...     {
        ...         "role": "user",
        ...         "content": "What's the weather like the next 3 days in San Francisco, CA?",
        ...     },
        ... ]
        >>> tools = [
        ...     {
        ...         "type": "function",
        ...         "function": {
        ...             "name": "get_current_weather",
        ...             "description": "Get the current weather",
        ...             "parameters": {
        ...                 "type": "object",
        ...                 "properties": {
        ...                     "location": {
        ...                         "type": "string",
        ...                         "description": "The city and state, e.g. San Francisco, CA",
        ...                     },
        ...                     "format": {
        ...                         "type": "string",
        ...                         "enum": ["celsius", "fahrenheit"],
        ...                         "description": "The temperature unit to use. Infer this from the users location.",
        ...                     },
        ...                 },
        ...                 "required": ["location", "format"],
        ...             },
        ...         },
        ...     },
        ...     {
        ...         "type": "function",
        ...         "function": {
        ...             "name": "get_n_day_weather_forecast",
        ...             "description": "Get an N-day weather forecast",
        ...             "parameters": {
        ...                 "type": "object",
        ...                 "properties": {
        ...                     "location": {
        ...                         "type": "string",
        ...                         "description": "The city and state, e.g. San Francisco, CA",
        ...                     },
        ...                     "format": {
        ...                         "type": "string",
        ...                         "enum": ["celsius", "fahrenheit"],
        ...                         "description": "The temperature unit to use. Infer this from the users location.",
        ...                     },
        ...                     "num_days": {
        ...                         "type": "integer",
        ...                         "description": "The number of days to forecast",
        ...                     },
        ...                 },
        ...                 "required": ["location", "format", "num_days"],
        ...             },
        ...         },
        ...     },
        ... ]

        >>> response = client.chat_completion(
        ...     model="meta-llama/Meta-Llama-3-70B-Instruct",
        ...     messages=messages,
        ...     tools=tools,
        ...     tool_choice="auto",
        ...     max_tokens=500,
        ... )
        >>> response.choices[0].message.tool_calls[0].function
        ChatCompletionOutputFunctionDefinition(
            arguments={
                'location': 'San Francisco, CA',
                'format': 'fahrenheit',
                'num_days': 3
            },
            name='get_n_day_weather_forecast',
            description=None
        )
        ```

        Example using response_format:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
        >>> messages = [
        ...     {
        ...         "role": "user",
        ...         "content": "I saw a puppy a cat and a raccoon during my bike ride in the park. What did I saw and when?",
        ...     },
        ... ]
        >>> response_format = {
        ...     "type": "json",
        ...     "value": {
        ...         "properties": {
        ...             "location": {"type": "string"},
        ...             "activity": {"type": "string"},
        ...             "animals_seen": {"type": "integer", "minimum": 1, "maximum": 5},
        ...             "animals": {"type": "array", "items": {"type": "string"}},
        ...         },
        ...         "required": ["location", "activity", "animals_seen", "animals"],
        ...     },
        ... }
        >>> response = client.chat_completion(
        ...     messages=messages,
        ...     response_format=response_format,
        ...     max_tokens=500,
        )
        >>> response.choices[0].message.content
        '{\n\n"activity": "bike ride",\n"animals": ["puppy", "cat", "raccoon"],\n"animals_seen": 3,\n"location": "park"}'
        ```
        """
        model_url = self._resolve_chat_completion_url(model)

        # `model` is sent in the payload. Not used by the server but can be useful for debugging/routing.
        # If it's a ID on the Hub => use it. Otherwise, we use a random string.
        model_id = model or self.model or "tgi"
        if model_id.startswith(("http://", "https://")):
            model_id = "tgi"  # dummy value

        payload = dict(
            model=model_id,
            messages=messages,
            frequency_penalty=frequency_penalty,
            logit_bias=logit_bias,
            logprobs=logprobs,
            max_tokens=max_tokens,
            n=n,
            presence_penalty=presence_penalty,
            response_format=response_format,
            seed=seed,
            stop=stop,
            temperature=temperature,
            tool_choice=tool_choice,
            tool_prompt=tool_prompt,
            tools=tools,
            top_logprobs=top_logprobs,
            top_p=top_p,
            stream=stream,
        )
        payload = {key: value for key, value in payload.items() if value is not None}
        data = self.post(model=model_url, json=payload, stream=stream)

        if stream:
            return _stream_chat_completion_response(data)  # type: ignore[arg-type]

        return ChatCompletionOutput.parse_obj_as_instance(data)  # type: ignore[arg-type]

    def _resolve_chat_completion_url(self, model: Optional[str] = None) -> str:
        # Since `chat_completion(..., model=xxx)` is also a payload parameter for the server, we need to handle 'model' differently.
        # `self.base_url` and `self.model` takes precedence over 'model' argument only in `chat_completion`.
        model_id_or_url = self.base_url or self.model or model or self.get_recommended_model("text-generation")

        # Resolve URL if it's a model ID
        model_url = (
            model_id_or_url
            if model_id_or_url.startswith(("http://", "https://"))
            else self._resolve_url(model_id_or_url, task="text-generation")
        )

        # Strip trailing /
        model_url = model_url.rstrip("/")

        # Append /chat/completions if not already present
        if model_url.endswith("/v1"):
            model_url += "/chat/completions"

        # Append /v1/chat/completions if not already present
        if not model_url.endswith("/chat/completions"):
            model_url += "/v1/chat/completions"

        return model_url

    def document_question_answering(
        self,
        image: ContentT,
        question: str,
        *,
        model: Optional[str] = None,
    ) -> List[DocumentQuestionAnsweringOutputElement]:
        """
        Answer questions on document images.

        Args:
            image (`Union[str, Path, bytes, BinaryIO]`):
                The input image for the context. It can be raw bytes, an image file, or a URL to an online image.
            question (`str`):
                Question to be answered.
            model (`str`, *optional*):
                The model to use for the document question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended document question answering model will be used.
                Defaults to None.

        Returns:
            `List[DocumentQuestionAnsweringOutputElement]`: a list of [`DocumentQuestionAnsweringOutputElement`] items containing the predicted label, associated probability, word ids, and page number.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.document_question_answering(image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png", question="What is the invoice number?")
        [DocumentQuestionAnsweringOutputElement(score=0.42515629529953003, answer='us-001', start=16, end=16)]
        ```
        """
        payload: Dict[str, Any] = {"question": question, "image": _b64_encode(image)}
        response = self.post(json=payload, model=model, task="document-question-answering")
        return DocumentQuestionAnsweringOutputElement.parse_obj_as_list(response)

    def feature_extraction(
        self,
        text: str,
        *,
        normalize: Optional[bool] = None,
        prompt_name: Optional[str] = None,
        truncate: Optional[bool] = None,
        truncation_direction: Optional[Literal["Left", "Right"]] = None,
        model: Optional[str] = None,
    ) -> "np.ndarray":
        """
        Generate embeddings for a given text.

        Args:
            text (`str`):
                The text to embed.
            model (`str`, *optional*):
                The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used.
                Defaults to None.
            normalize (`bool`, *optional*):
                Whether to normalize the embeddings or not. Defaults to None.
                Only available on server powered by Text-Embedding-Inference.
            prompt_name (`str`, *optional*):
                The name of the prompt that should be used by for encoding. If not set, no prompt will be applied.
                Must be a key in the `Sentence Transformers` configuration `prompts` dictionary.
                For example if ``prompt_name`` is "query" and the ``prompts`` is {"query": "query: ",...},
                then the sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?"
                because the prompt text will be prepended before any text to encode.
            truncate (`bool`, *optional*):
                Whether to truncate the embeddings or not. Defaults to None.
                Only available on server powered by Text-Embedding-Inference.
            truncation_direction (`Literal["Left", "Right"]`, *optional*):
                Which side of the input should be truncated when `truncate=True` is passed.

        Returns:
            `np.ndarray`: The embedding representing the input text as a float32 numpy array.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.feature_extraction("Hi, who are you?")
        array([[ 2.424802  ,  2.93384   ,  1.1750331 , ...,  1.240499, -0.13776633, -0.7889173 ],
        [-0.42943227, -0.6364878 , -1.693462  , ...,  0.41978157, -2.4336355 ,  0.6162071 ],
        ...,
        [ 0.28552425, -0.928395  , -1.2077185 , ...,  0.76810825, -2.1069427 ,  0.6236161 ]], dtype=float32)
        ```
        """
        payload: Dict = {"inputs": text}
        if normalize is not None:
            payload["normalize"] = normalize
        if prompt_name is not None:
            payload["prompt_name"] = prompt_name
        if truncate is not None:
            payload["truncate"] = truncate
        if truncation_direction is not None:
            payload["truncation_direction"] = truncation_direction
        response = self.post(json=payload, model=model, task="feature-extraction")
        np = _import_numpy()
        return np.array(_bytes_to_dict(response), dtype="float32")

    def fill_mask(self, text: str, *, model: Optional[str] = None) -> List[FillMaskOutputElement]:
        """
        Fill in a hole with a missing word (token to be precise).

        Args:
            text (`str`):
                a string to be filled from, must contain the [MASK] token (check model card for exact name of the mask).
            model (`str`, *optional*):
                The model to use for the fill mask task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended fill mask model will be used.
                Defaults to None.

        Returns:
            `List[FillMaskOutputElement]`: a list of [`FillMaskOutputElement`] items containing the predicted label, associated
            probability, token reference, and completed text.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.fill_mask("The goal of life is <mask>.")
        [
            FillMaskOutputElement(score=0.06897063553333282, token=11098, token_str=' happiness', sequence='The goal of life is happiness.'),
            FillMaskOutputElement(score=0.06554922461509705, token=45075, token_str=' immortality', sequence='The goal of life is immortality.')
        ]
        ```
        """
        response = self.post(json={"inputs": text}, model=model, task="fill-mask")
        return FillMaskOutputElement.parse_obj_as_list(response)

    def image_classification(
        self,
        image: ContentT,
        *,
        model: Optional[str] = None,
    ) -> List[ImageClassificationOutputElement]:
        """
        Perform image classification on the given image using the specified model.

        Args:
            image (`Union[str, Path, bytes, BinaryIO]`):
                The image to classify. It can be raw bytes, an image file, or a URL to an online image.
            model (`str`, *optional*):
                The model to use for image classification. Can be a model ID hosted on the Hugging Face Hub or a URL to a
                deployed Inference Endpoint. If not provided, the default recommended model for image classification will be used.

        Returns:
            `List[ImageClassificationOutputElement]`: a list of [`ImageClassificationOutputElement`] items containing the predicted label and associated probability.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.image_classification("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg")
        [ImageClassificationOutputElement(score=0.9779096841812134, label='Blenheim spaniel'), ...]
        ```
        """
        response = self.post(data=image, model=model, task="image-classification")
        return ImageClassificationOutputElement.parse_obj_as_list(response)

    def image_segmentation(
        self,
        image: ContentT,
        *,
        model: Optional[str] = None,
    ) -> List[ImageSegmentationOutputElement]:
        """
        Perform image segmentation on the given image using the specified model.

        <Tip warning={true}>

        You must have `PIL` installed if you want to work with images (`pip install Pillow`).

        </Tip>

        Args:
            image (`Union[str, Path, bytes, BinaryIO]`):
                The image to segment. It can be raw bytes, an image file, or a URL to an online image.
            model (`str`, *optional*):
                The model to use for image segmentation. Can be a model ID hosted on the Hugging Face Hub or a URL to a
                deployed Inference Endpoint. If not provided, the default recommended model for image segmentation will be used.

        Returns:
            `List[ImageSegmentationOutputElement]`: A list of [`ImageSegmentationOutputElement`] items containing the segmented masks and associated attributes.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.image_segmentation("cat.jpg"):
        [ImageSegmentationOutputElement(score=0.989008, label='LABEL_184', mask=<PIL.PngImagePlugin.PngImageFile image mode=L size=400x300 at 0x7FDD2B129CC0>), ...]
        ```
        """
        response = self.post(data=image, model=model, task="image-segmentation")
        output = ImageSegmentationOutputElement.parse_obj_as_list(response)
        for item in output:
            item.mask = _b64_to_image(item.mask)
        return output

    def image_to_image(
        self,
        image: ContentT,
        prompt: Optional[str] = None,
        *,
        negative_prompt: Optional[str] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: Optional[int] = None,
        guidance_scale: Optional[float] = None,
        model: Optional[str] = None,
        **kwargs,
    ) -> "Image":
        """
        Perform image-to-image translation using a specified model.

        <Tip warning={true}>

        You must have `PIL` installed if you want to work with images (`pip install Pillow`).

        </Tip>

        Args:
            image (`Union[str, Path, bytes, BinaryIO]`):
                The input image for translation. It can be raw bytes, an image file, or a URL to an online image.
            prompt (`str`, *optional*):
                The text prompt to guide the image generation.
            negative_prompt (`str`, *optional*):
                A negative prompt to guide the translation process.
            height (`int`, *optional*):
                The height in pixels of the generated image.
            width (`int`, *optional*):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*):
                Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            `Image`: The translated image.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> image = client.image_to_image("cat.jpg", prompt="turn the cat into a tiger")
        >>> image.save("tiger.jpg")
        ```
        """
        parameters = {
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "height": height,
            "width": width,
            "num_inference_steps": num_inference_steps,
            "guidance_scale": guidance_scale,
            **kwargs,
        }
        if all(parameter is None for parameter in parameters.values()):
            # Either only an image to send => send as raw bytes
            data = image
            payload: Optional[Dict[str, Any]] = None
        else:
            # Or an image + some parameters => use base64 encoding
            data = None
            payload = {"inputs": _b64_encode(image)}
            for key, value in parameters.items():
                if value is not None:
                    payload.setdefault("parameters", {})[key] = value

        response = self.post(json=payload, data=data, model=model, task="image-to-image")
        return _bytes_to_image(response)

    def image_to_text(self, image: ContentT, *, model: Optional[str] = None) -> ImageToTextOutput:
        """
        Takes an input image and return text.

        Models can have very different outputs depending on your use case (image captioning, optical character recognition
        (OCR), Pix2Struct, etc). Please have a look to the model card to learn more about a model's specificities.

        Args:
            image (`Union[str, Path, bytes, BinaryIO]`):
                The input image to caption. It can be raw bytes, an image file, or a URL to an online image..
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            [`ImageToTextOutput`]: The generated text.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.image_to_text("cat.jpg")
        'a cat standing in a grassy field '
        >>> client.image_to_text("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg")
        'a dog laying on the grass next to a flower pot '
        ```
        """
        response = self.post(data=image, model=model, task="image-to-text")
        output = ImageToTextOutput.parse_obj(response)
        return output[0] if isinstance(output, list) else output

    def list_deployed_models(
        self, frameworks: Union[None, str, Literal["all"], List[str]] = None
    ) -> Dict[str, List[str]]:
        """
        List models deployed on the Serverless Inference API service.

        This helper checks deployed models framework by framework. By default, it will check the 4 main frameworks that
        are supported and account for 95% of the hosted models. However, if you want a complete list of models you can
        specify `frameworks="all"` as input. Alternatively, if you know before-hand which framework you are interested
        in, you can also restrict to search to this one (e.g. `frameworks="text-generation-inference"`). The more
        frameworks are checked, the more time it will take.

        <Tip warning={true}>

        This endpoint method does not return a live list of all models available for the Serverless Inference API service.
        It searches over a cached list of models that were recently available and the list may not be up to date.
        If you want to know the live status of a specific model, use [`~InferenceClient.get_model_status`].

        </Tip>

        <Tip>

        This endpoint method is mostly useful for discoverability. If you already know which model you want to use and want to
        check its availability, you can directly use [`~InferenceClient.get_model_status`].

        </Tip>

        Args:
            frameworks (`Literal["all"]` or `List[str]` or `str`, *optional*):
                The frameworks to filter on. By default only a subset of the available frameworks are tested. If set to
                "all", all available frameworks will be tested. It is also possible to provide a single framework or a
                custom set of frameworks to check.

        Returns:
            `Dict[str, List[str]]`: A dictionary mapping task names to a sorted list of model IDs.

        Example:
        ```python
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()

        # Discover zero-shot-classification models currently deployed
        >>> models = client.list_deployed_models()
        >>> models["zero-shot-classification"]
        ['Narsil/deberta-large-mnli-zero-cls', 'facebook/bart-large-mnli', ...]

        # List from only 1 framework
        >>> client.list_deployed_models("text-generation-inference")
        {'text-generation': ['bigcode/starcoder', 'meta-llama/Llama-2-70b-chat-hf', ...], ...}
        ```
        """
        # Resolve which frameworks to check
        if frameworks is None:
            frameworks = MAIN_INFERENCE_API_FRAMEWORKS
        elif frameworks == "all":
            frameworks = ALL_INFERENCE_API_FRAMEWORKS
        elif isinstance(frameworks, str):
            frameworks = [frameworks]
        frameworks = list(set(frameworks))

        # Fetch them iteratively
        models_by_task: Dict[str, List[str]] = {}

        def _unpack_response(framework: str, items: List[Dict]) -> None:
            for model in items:
                if framework == "sentence-transformers":
                    # Model running with the `sentence-transformers` framework can work with both tasks even if not
                    # branded as such in the API response
                    models_by_task.setdefault("feature-extraction", []).append(model["model_id"])
                    models_by_task.setdefault("sentence-similarity", []).append(model["model_id"])
                else:
                    models_by_task.setdefault(model["task"], []).append(model["model_id"])

        for framework in frameworks:
            response = get_session().get(f"{INFERENCE_ENDPOINT}/framework/{framework}", headers=self.headers)
            hf_raise_for_status(response)
            _unpack_response(framework, response.json())

        # Sort alphabetically for discoverability and return
        for task, models in models_by_task.items():
            models_by_task[task] = sorted(set(models), key=lambda x: x.lower())
        return models_by_task

    def object_detection(
        self,
        image: ContentT,
        *,
        model: Optional[str] = None,
    ) -> List[ObjectDetectionOutputElement]:
        """
        Perform object detection on the given image using the specified model.

        <Tip warning={true}>

        You must have `PIL` installed if you want to work with images (`pip install Pillow`).

        </Tip>

        Args:
            image (`Union[str, Path, bytes, BinaryIO]`):
                The image to detect objects on. It can be raw bytes, an image file, or a URL to an online image.
            model (`str`, *optional*):
                The model to use for object detection. Can be a model ID hosted on the Hugging Face Hub or a URL to a
                deployed Inference Endpoint. If not provided, the default recommended model for object detection (DETR) will be used.

        Returns:
            `List[ObjectDetectionOutputElement]`: A list of [`ObjectDetectionOutputElement`] items containing the bounding boxes and associated attributes.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.
            `ValueError`:
                If the request output is not a List.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.object_detection("people.jpg"):
        [ObjectDetectionOutputElement(score=0.9486683011054993, label='person', box=ObjectDetectionBoundingBox(xmin=59, ymin=39, xmax=420, ymax=510)), ...]
        ```
        """
        # detect objects
        response = self.post(data=image, model=model, task="object-detection")
        return ObjectDetectionOutputElement.parse_obj_as_list(response)

    def question_answering(
        self, question: str, context: str, *, model: Optional[str] = None
    ) -> QuestionAnsweringOutputElement:
        """
        Retrieve the answer to a question from a given text.

        Args:
            question (`str`):
                Question to be answered.
            context (`str`):
                The context of the question.
            model (`str`):
                The model to use for the question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint.

        Returns:
            [`QuestionAnsweringOutputElement`]: an question answering output containing the score, start index, end index, and answer.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.question_answering(question="What's my name?", context="My name is Clara and I live in Berkeley.")
        QuestionAnsweringOutputElement(score=0.9326562285423279, start=11, end=16, answer='Clara')
        ```
        """

        payload: Dict[str, Any] = {"question": question, "context": context}
        response = self.post(
            json=payload,
            model=model,
            task="question-answering",
        )
        return QuestionAnsweringOutputElement.parse_obj_as_instance(response)

    def sentence_similarity(
        self, sentence: str, other_sentences: List[str], *, model: Optional[str] = None
    ) -> List[float]:
        """
        Compute the semantic similarity between a sentence and a list of other sentences by comparing their embeddings.

        Args:
            sentence (`str`):
                The main sentence to compare to others.
            other_sentences (`List[str]`):
                The list of sentences to compare to.
            model (`str`, *optional*):
                The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used.
                Defaults to None.

        Returns:
            `List[float]`: The embedding representing the input text.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.sentence_similarity(
        ...     "Machine learning is so easy.",
        ...     other_sentences=[
        ...         "Deep learning is so straightforward.",
        ...         "This is so difficult, like rocket science.",
        ...         "I can't believe how much I struggled with this.",
        ...     ],
        ... )
        [0.7785726189613342, 0.45876261591911316, 0.2906220555305481]
        ```
        """
        response = self.post(
            json={"inputs": {"source_sentence": sentence, "sentences": other_sentences}},
            model=model,
            task="sentence-similarity",
        )
        return _bytes_to_list(response)

    def summarization(
        self,
        text: str,
        *,
        parameters: Optional[Dict[str, Any]] = None,
        model: Optional[str] = None,
    ) -> SummarizationOutput:
        """
        Generate a summary of a given text using a specified model.

        Args:
            text (`str`):
                The input text to summarize.
            parameters (`Dict[str, Any]`, *optional*):
                Additional parameters for summarization. Check out this [page](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
                for more details.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            [`SummarizationOutput`]: The generated summary text.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.summarization("The Eiffel tower...")
        SummarizationOutput(generated_text="The Eiffel tower is one of the most famous landmarks in the world....")
        ```
        """
        payload: Dict[str, Any] = {"inputs": text}
        if parameters is not None:
            payload["parameters"] = parameters
        response = self.post(json=payload, model=model, task="summarization")
        return SummarizationOutput.parse_obj_as_list(response)[0]

    def table_question_answering(
        self, table: Dict[str, Any], query: str, *, model: Optional[str] = None
    ) -> TableQuestionAnsweringOutputElement:
        """
        Retrieve the answer to a question from information given in a table.

        Args:
            table (`str`):
                A table of data represented as a dict of lists where entries are headers and the lists are all the
                values, all lists must have the same size.
            query (`str`):
                The query in plain text that you want to ask the table.
            model (`str`):
                The model to use for the table-question-answering task. Can be a model ID hosted on the Hugging Face
                Hub or a URL to a deployed Inference Endpoint.

        Returns:
            [`TableQuestionAnsweringOutputElement`]: a table question answering output containing the answer, coordinates, cells and the aggregator used.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> query = "How many stars does the transformers repository have?"
        >>> table = {"Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"]}
        >>> client.table_question_answering(table, query, model="google/tapas-base-finetuned-wtq")
        TableQuestionAnsweringOutputElement(answer='36542', coordinates=[[0, 1]], cells=['36542'], aggregator='AVERAGE')
        ```
        """
        response = self.post(
            json={
                "query": query,
                "table": table,
            },
            model=model,
            task="table-question-answering",
        )
        return TableQuestionAnsweringOutputElement.parse_obj_as_instance(response)

    def tabular_classification(self, table: Dict[str, Any], *, model: Optional[str] = None) -> List[str]:
        """
        Classifying a target category (a group) based on a set of attributes.

        Args:
            table (`Dict[str, Any]`):
                Set of attributes to classify.
            model (`str`, *optional*):
                The model to use for the tabular classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended tabular classification model will be used.
                Defaults to None.

        Returns:
            `List`: a list of labels, one per row in the initial table.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> table = {
        ...     "fixed_acidity": ["7.4", "7.8", "10.3"],
        ...     "volatile_acidity": ["0.7", "0.88", "0.32"],
        ...     "citric_acid": ["0", "0", "0.45"],
        ...     "residual_sugar": ["1.9", "2.6", "6.4"],
        ...     "chlorides": ["0.076", "0.098", "0.073"],
        ...     "free_sulfur_dioxide": ["11", "25", "5"],
        ...     "total_sulfur_dioxide": ["34", "67", "13"],
        ...     "density": ["0.9978", "0.9968", "0.9976"],
        ...     "pH": ["3.51", "3.2", "3.23"],
        ...     "sulphates": ["0.56", "0.68", "0.82"],
        ...     "alcohol": ["9.4", "9.8", "12.6"],
        ... }
        >>> client.tabular_classification(table=table, model="julien-c/wine-quality")
        ["5", "5", "5"]
        ```
        """
        response = self.post(json={"table": table}, model=model, task="tabular-classification")
        return _bytes_to_list(response)

    def tabular_regression(self, table: Dict[str, Any], *, model: Optional[str] = None) -> List[float]:
        """
        Predicting a numerical target value given a set of attributes/features in a table.

        Args:
            table (`Dict[str, Any]`):
                Set of attributes stored in a table. The attributes used to predict the target can be both numerical and categorical.
            model (`str`, *optional*):
                The model to use for the tabular regression task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended tabular regression model will be used.
                Defaults to None.

        Returns:
            `List`: a list of predicted numerical target values.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> table = {
        ...     "Height": ["11.52", "12.48", "12.3778"],
        ...     "Length1": ["23.2", "24", "23.9"],
        ...     "Length2": ["25.4", "26.3", "26.5"],
        ...     "Length3": ["30", "31.2", "31.1"],
        ...     "Species": ["Bream", "Bream", "Bream"],
        ...     "Width": ["4.02", "4.3056", "4.6961"],
        ... }
        >>> client.tabular_regression(table, model="scikit-learn/Fish-Weight")
        [110, 120, 130]
        ```
        """
        response = self.post(json={"table": table}, model=model, task="tabular-regression")
        return _bytes_to_list(response)

    def text_classification(self, text: str, *, model: Optional[str] = None) -> List[TextClassificationOutputElement]:
        """
        Perform text classification (e.g. sentiment-analysis) on the given text.

        Args:
            text (`str`):
                A string to be classified.
            model (`str`, *optional*):
                The model to use for the text classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended text classification model will be used.
                Defaults to None.

        Returns:
            `List[TextClassificationOutputElement]`: a list of [`TextClassificationOutputElement`] items containing the predicted label and associated probability.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.text_classification("I like you")
        [
            TextClassificationOutputElement(label='POSITIVE', score=0.9998695850372314),
            TextClassificationOutputElement(label='NEGATIVE', score=0.0001304351753788069),
        ]
        ```
        """
        response = self.post(json={"inputs": text}, model=model, task="text-classification")
        return TextClassificationOutputElement.parse_obj_as_list(response)[0]  # type: ignore [return-value]

    @overload
    def text_generation(  # type: ignore
        self,
        prompt: str,
        *,
        details: Literal[False] = ...,
        stream: Literal[False] = ...,
        model: Optional[str] = None,
        # Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
        adapter_id: Optional[str] = None,
        best_of: Optional[int] = None,
        decoder_input_details: Optional[bool] = None,
        do_sample: Optional[bool] = False,  # Manual default value
        frequency_penalty: Optional[float] = None,
        grammar: Optional[TextGenerationInputGrammarType] = None,
        max_new_tokens: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        return_full_text: Optional[bool] = False,  # Manual default value
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        stop_sequences: Optional[List[str]] = None,  # Deprecated, use `stop` instead
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_n_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
        watermark: Optional[bool] = None,
    ) -> str: ...

    @overload
    def text_generation(  # type: ignore
        self,
        prompt: str,
        *,
        details: Literal[True] = ...,
        stream: Literal[False] = ...,
        model: Optional[str] = None,
        # Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
        adapter_id: Optional[str] = None,
        best_of: Optional[int] = None,
        decoder_input_details: Optional[bool] = None,
        do_sample: Optional[bool] = False,  # Manual default value
        frequency_penalty: Optional[float] = None,
        grammar: Optional[TextGenerationInputGrammarType] = None,
        max_new_tokens: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        return_full_text: Optional[bool] = False,  # Manual default value
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        stop_sequences: Optional[List[str]] = None,  # Deprecated, use `stop` instead
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_n_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
        watermark: Optional[bool] = None,
    ) -> TextGenerationOutput: ...

    @overload
    def text_generation(  # type: ignore
        self,
        prompt: str,
        *,
        details: Literal[False] = ...,
        stream: Literal[True] = ...,
        model: Optional[str] = None,
        # Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
        adapter_id: Optional[str] = None,
        best_of: Optional[int] = None,
        decoder_input_details: Optional[bool] = None,
        do_sample: Optional[bool] = False,  # Manual default value
        frequency_penalty: Optional[float] = None,
        grammar: Optional[TextGenerationInputGrammarType] = None,
        max_new_tokens: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        return_full_text: Optional[bool] = False,  # Manual default value
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        stop_sequences: Optional[List[str]] = None,  # Deprecated, use `stop` instead
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_n_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
        watermark: Optional[bool] = None,
    ) -> Iterable[str]: ...

    @overload
    def text_generation(  # type: ignore
        self,
        prompt: str,
        *,
        details: Literal[True] = ...,
        stream: Literal[True] = ...,
        model: Optional[str] = None,
        # Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
        adapter_id: Optional[str] = None,
        best_of: Optional[int] = None,
        decoder_input_details: Optional[bool] = None,
        do_sample: Optional[bool] = False,  # Manual default value
        frequency_penalty: Optional[float] = None,
        grammar: Optional[TextGenerationInputGrammarType] = None,
        max_new_tokens: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        return_full_text: Optional[bool] = False,  # Manual default value
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        stop_sequences: Optional[List[str]] = None,  # Deprecated, use `stop` instead
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_n_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
        watermark: Optional[bool] = None,
    ) -> Iterable[TextGenerationStreamOutput]: ...

    @overload
    def text_generation(
        self,
        prompt: str,
        *,
        details: Literal[True] = ...,
        stream: bool = ...,
        model: Optional[str] = None,
        # Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
        adapter_id: Optional[str] = None,
        best_of: Optional[int] = None,
        decoder_input_details: Optional[bool] = None,
        do_sample: Optional[bool] = False,  # Manual default value
        frequency_penalty: Optional[float] = None,
        grammar: Optional[TextGenerationInputGrammarType] = None,
        max_new_tokens: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        return_full_text: Optional[bool] = False,  # Manual default value
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        stop_sequences: Optional[List[str]] = None,  # Deprecated, use `stop` instead
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_n_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
        watermark: Optional[bool] = None,
    ) -> Union[TextGenerationOutput, Iterable[TextGenerationStreamOutput]]: ...

    def text_generation(
        self,
        prompt: str,
        *,
        details: bool = False,
        stream: bool = False,
        model: Optional[str] = None,
        # Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
        adapter_id: Optional[str] = None,
        best_of: Optional[int] = None,
        decoder_input_details: Optional[bool] = None,
        do_sample: Optional[bool] = False,  # Manual default value
        frequency_penalty: Optional[float] = None,
        grammar: Optional[TextGenerationInputGrammarType] = None,
        max_new_tokens: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        return_full_text: Optional[bool] = False,  # Manual default value
        seed: Optional[int] = None,
        stop: Optional[List[str]] = None,
        stop_sequences: Optional[List[str]] = None,  # Deprecated, use `stop` instead
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_n_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
        watermark: Optional[bool] = None,
    ) -> Union[str, TextGenerationOutput, Iterable[str], Iterable[TextGenerationStreamOutput]]:
        """
        Given a prompt, generate the following text.

        API endpoint is supposed to run with the `text-generation-inference` backend (TGI). This backend is the
        go-to solution to run large language models at scale. However, for some smaller models (e.g. "gpt2") the
        default `transformers` + `api-inference` solution is still in use. Both approaches have very similar APIs, but
        not exactly the same. This method is compatible with both approaches but some parameters are only available for
        `text-generation-inference`. If some parameters are ignored, a warning message is triggered but the process
        continues correctly.

        To learn more about the TGI project, please refer to https://github.com/huggingface/text-generation-inference.

        <Tip>

        If you want to generate a response from chat messages, you should use the [`InferenceClient.chat_completion`] method.
        It accepts a list of messages instead of a single text prompt and handles the chat templating for you.

        </Tip>

        Args:
            prompt (`str`):
                Input text.
            details (`bool`, *optional*):
                By default, text_generation returns a string. Pass `details=True` if you want a detailed output (tokens,
                probabilities, seed, finish reason, etc.). Only available for models running on with the
                `text-generation-inference` backend.
            stream (`bool`, *optional*):
                By default, text_generation returns the full generated text. Pass `stream=True` if you want a stream of
                tokens to be returned. Only available for models running on with the `text-generation-inference`
                backend.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
            adapter_id (`str`, *optional*):
                Lora adapter id.
            best_of (`int`, *optional*):
                Generate best_of sequences and return the one if the highest token logprobs.
            decoder_input_details (`bool`, *optional*):
                Return the decoder input token logprobs and ids. You must set `details=True` as well for it to be taken
                into account. Defaults to `False`.
            do_sample (`bool`, *optional*):
                Activate logits sampling
            frequency_penalty (`float`, *optional*):
                Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in
                the text so far, decreasing the model's likelihood to repeat the same line verbatim.
            grammar ([`TextGenerationInputGrammarType`], *optional*):
                Grammar constraints. Can be either a JSONSchema or a regex.
            max_new_tokens (`int`, *optional*):
                Maximum number of generated tokens
            repetition_penalty (`float`, *optional*):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            return_full_text (`bool`, *optional*):
                Whether to prepend the prompt to the generated text
            seed (`int`, *optional*):
                Random sampling seed
            stop (`List[str]`, *optional*):
                Stop generating tokens if a member of `stop` is generated.
            stop_sequences (`List[str]`, *optional*):
                Deprecated argument. Use `stop` instead.
            temperature (`float`, *optional*):
                The value used to module the logits distribution.
            top_n_tokens (`int`, *optional*):
                Return information about the `top_n_tokens` most likely tokens at each generation step, instead of
                just the sampled token.
            top_k (`int`, *optional`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`, *optional`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
            truncate (`int`, *optional`):
                Truncate inputs tokens to the given size.
            typical_p (`float`, *optional`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
            watermark (`bool`, *optional`):
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)

        Returns:
            `Union[str, TextGenerationOutput, Iterable[str], Iterable[TextGenerationStreamOutput]]`:
            Generated text returned from the server:
            - if `stream=False` and `details=False`, the generated text is returned as a `str` (default)
            - if `stream=True` and `details=False`, the generated text is returned token by token as a `Iterable[str]`
            - if `stream=False` and `details=True`, the generated text is returned with more details as a [`~huggingface_hub.TextGenerationOutput`]
            - if `details=True` and `stream=True`, the generated text is returned token by token as a iterable of [`~huggingface_hub.TextGenerationStreamOutput`]

        Raises:
            `ValidationError`:
                If input values are not valid. No HTTP call is made to the server.
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()

        # Case 1: generate text
        >>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12)
        '100% open source and built to be easy to use.'

        # Case 2: iterate over the generated tokens. Useful for large generation.
        >>> for token in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, stream=True):
        ...     print(token)
        100
        %
        open
        source
        and
        built
        to
        be
        easy
        to
        use
        .

        # Case 3: get more details about the generation process.
        >>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True)
        TextGenerationOutput(
            generated_text='100% open source and built to be easy to use.',
            details=TextGenerationDetails(
                finish_reason='length',
                generated_tokens=12,
                seed=None,
                prefill=[
                    TextGenerationPrefillOutputToken(id=487, text='The', logprob=None),
                    TextGenerationPrefillOutputToken(id=53789, text=' hugging', logprob=-13.171875),
                    (...)
                    TextGenerationPrefillOutputToken(id=204, text=' ', logprob=-7.0390625)
                ],
                tokens=[
                    TokenElement(id=1425, text='100', logprob=-1.0175781, special=False),
                    TokenElement(id=16, text='%', logprob=-0.0463562, special=False),
                    (...)
                    TokenElement(id=25, text='.', logprob=-0.5703125, special=False)
                ],
                best_of_sequences=None
            )
        )

        # Case 4: iterate over the generated tokens with more details.
        # Last object is more complete, containing the full generated text and the finish reason.
        >>> for details in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True, stream=True):
        ...     print(details)
        ...
        TextGenerationStreamOutput(token=TokenElement(id=1425, text='100', logprob=-1.0175781, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=16, text='%', logprob=-0.0463562, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=1314, text=' open', logprob=-1.3359375, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=3178, text=' source', logprob=-0.28100586, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=273, text=' and', logprob=-0.5961914, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=3426, text=' built', logprob=-1.9423828, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=271, text=' to', logprob=-1.4121094, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=314, text=' be', logprob=-1.5224609, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=1833, text=' easy', logprob=-2.1132812, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=271, text=' to', logprob=-0.08520508, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(id=745, text=' use', logprob=-0.39453125, special=False), generated_text=None, details=None)
        TextGenerationStreamOutput(token=TokenElement(
            id=25,
            text='.',
            logprob=-0.5703125,
            special=False),
            generated_text='100% open source and built to be easy to use.',
            details=TextGenerationStreamOutputStreamDetails(finish_reason='length', generated_tokens=12, seed=None)
        )

        # Case 5: generate constrained output using grammar
        >>> response = client.text_generation(
        ...     prompt="I saw a puppy a cat and a raccoon during my bike ride in the park",
        ...     model="HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
        ...     max_new_tokens=100,
        ...     repetition_penalty=1.3,
        ...     grammar={
        ...         "type": "json",
        ...         "value": {
        ...             "properties": {
        ...                 "location": {"type": "string"},
        ...                 "activity": {"type": "string"},
        ...                 "animals_seen": {"type": "integer", "minimum": 1, "maximum": 5},
        ...                 "animals": {"type": "array", "items": {"type": "string"}},
        ...             },
        ...             "required": ["location", "activity", "animals_seen", "animals"],
        ...         },
        ...     },
        ... )
        >>> json.loads(response)
        {
            "activity": "bike riding",
            "animals": ["puppy", "cat", "raccoon"],
            "animals_seen": 3,
            "location": "park"
        }
        ```
        """
        if decoder_input_details and not details:
            warnings.warn(
                "`decoder_input_details=True` has been passed to the server but `details=False` is set meaning that"
                " the output from the server will be truncated."
            )
            decoder_input_details = False

        if stop_sequences is not None:
            warnings.warn(
                "`stop_sequences` is a deprecated argument for `text_generation` task"
                " and will be removed in version '0.28.0'. Use `stop` instead.",
                FutureWarning,
            )
        if stop is None:
            stop = stop_sequences  # use deprecated arg if provided

        # Build payload
        parameters = {
            "adapter_id": adapter_id,
            "best_of": best_of,
            "decoder_input_details": decoder_input_details,
            "details": details,
            "do_sample": do_sample,
            "frequency_penalty": frequency_penalty,
            "grammar": grammar,
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": repetition_penalty,
            "return_full_text": return_full_text,
            "seed": seed,
            "stop": stop if stop is not None else [],
            "temperature": temperature,
            "top_k": top_k,
            "top_n_tokens": top_n_tokens,
            "top_p": top_p,
            "truncate": truncate,
            "typical_p": typical_p,
            "watermark": watermark,
        }
        parameters = {k: v for k, v in parameters.items() if v is not None}
        payload = {
            "inputs": prompt,
            "parameters": parameters,
            "stream": stream,
        }

        # Remove some parameters if not a TGI server
        unsupported_kwargs = _get_unsupported_text_generation_kwargs(model)
        if len(unsupported_kwargs) > 0:
            # The server does not support some parameters
            # => means it is not a TGI server
            # => remove unsupported parameters and warn the user

            ignored_parameters = []
            for key in unsupported_kwargs:
                if parameters.get(key):
                    ignored_parameters.append(key)
                parameters.pop(key, None)
            if len(ignored_parameters) > 0:
                warnings.warn(
                    "API endpoint/model for text-generation is not served via TGI. Ignoring following parameters:"
                    f" {', '.join(ignored_parameters)}.",
                    UserWarning,
                )
            if details:
                warnings.warn(
                    "API endpoint/model for text-generation is not served via TGI. Parameter `details=True` will"
                    " be ignored meaning only the generated text will be returned.",
                    UserWarning,
                )
                details = False
            if stream:
                raise ValueError(
                    "API endpoint/model for text-generation is not served via TGI. Cannot return output as a stream."
                    " Please pass `stream=False` as input."
                )

        # Handle errors separately for more precise error messages
        try:
            bytes_output = self.post(json=payload, model=model, task="text-generation", stream=stream)  # type: ignore
        except HTTPError as e:
            match = MODEL_KWARGS_NOT_USED_REGEX.search(str(e))
            if isinstance(e, BadRequestError) and match:
                unused_params = [kwarg.strip("' ") for kwarg in match.group(1).split(",")]
                _set_unsupported_text_generation_kwargs(model, unused_params)
                return self.text_generation(  # type: ignore
                    prompt=prompt,
                    details=details,
                    stream=stream,
                    model=model,
                    adapter_id=adapter_id,
                    best_of=best_of,
                    decoder_input_details=decoder_input_details,
                    do_sample=do_sample,
                    frequency_penalty=frequency_penalty,
                    grammar=grammar,
                    max_new_tokens=max_new_tokens,
                    repetition_penalty=repetition_penalty,
                    return_full_text=return_full_text,
                    seed=seed,
                    stop=stop,
                    temperature=temperature,
                    top_k=top_k,
                    top_n_tokens=top_n_tokens,
                    top_p=top_p,
                    truncate=truncate,
                    typical_p=typical_p,
                    watermark=watermark,
                )
            raise_text_generation_error(e)

        # Parse output
        if stream:
            return _stream_text_generation_response(bytes_output, details)  # type: ignore

        data = _bytes_to_dict(bytes_output)  # type: ignore[arg-type]

        # Data can be a single element (dict) or an iterable of dicts where we select the first element of.
        if isinstance(data, list):
            data = data[0]

        return TextGenerationOutput.parse_obj_as_instance(data) if details else data["generated_text"]

    def text_to_image(
        self,
        prompt: str,
        *,
        negative_prompt: Optional[str] = None,
        height: Optional[float] = None,
        width: Optional[float] = None,
        num_inference_steps: Optional[float] = None,
        guidance_scale: Optional[float] = None,
        model: Optional[str] = None,
        **kwargs,
    ) -> "Image":
        """
        Generate an image based on a given text using a specified model.

        <Tip warning={true}>

        You must have `PIL` installed if you want to work with images (`pip install Pillow`).

        </Tip>

        Args:
            prompt (`str`):
                The prompt to generate an image from.
            negative_prompt (`str`, *optional*):
                An optional negative prompt for the image generation.
            height (`float`, *optional*):
                The height in pixels of the image to generate.
            width (`float`, *optional*):
                The width in pixels of the image to generate.
            num_inference_steps (`int`, *optional*):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*):
                Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            `Image`: The generated image.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()

        >>> image = client.text_to_image("An astronaut riding a horse on the moon.")
        >>> image.save("astronaut.png")

        >>> image = client.text_to_image(
        ...     "An astronaut riding a horse on the moon.",
        ...     negative_prompt="low resolution, blurry",
        ...     model="stabilityai/stable-diffusion-2-1",
        ... )
        >>> image.save("better_astronaut.png")
        ```
        """
        payload = {"inputs": prompt}
        parameters = {
            "negative_prompt": negative_prompt,
            "height": height,
            "width": width,
            "num_inference_steps": num_inference_steps,
            "guidance_scale": guidance_scale,
            **kwargs,
        }
        for key, value in parameters.items():
            if value is not None:
                payload.setdefault("parameters", {})[key] = value  # type: ignore
        response = self.post(json=payload, model=model, task="text-to-image")
        return _bytes_to_image(response)

    def text_to_speech(self, text: str, *, model: Optional[str] = None) -> bytes:
        """
        Synthesize an audio of a voice pronouncing a given text.

        Args:
            text (`str`):
                The text to synthesize.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            `bytes`: The generated audio.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from pathlib import Path
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()

        >>> audio = client.text_to_speech("Hello world")
        >>> Path("hello_world.flac").write_bytes(audio)
        ```
        """
        return self.post(json={"inputs": text}, model=model, task="text-to-speech")

    def token_classification(
        self, text: str, *, model: Optional[str] = None
    ) -> List[TokenClassificationOutputElement]:
        """
        Perform token classification on the given text.
        Usually used for sentence parsing, either grammatical, or Named Entity Recognition (NER) to understand keywords contained within text.

        Args:
            text (`str`):
                A string to be classified.
            model (`str`, *optional*):
                The model to use for the token classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended token classification model will be used.
                Defaults to None.

        Returns:
            `List[TokenClassificationOutputElement]`: List of [`TokenClassificationOutputElement`] items containing the entity group, confidence score, word, start and end index.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.token_classification("My name is Sarah Jessica Parker but you can call me Jessica")
        [
            TokenClassificationOutputElement(
                entity_group='PER',
                score=0.9971321225166321,
                word='Sarah Jessica Parker',
                start=11,
                end=31,
            ),
            TokenClassificationOutputElement(
                entity_group='PER',
                score=0.9773476123809814,
                word='Jessica',
                start=52,
                end=59,
            )
        ]
        ```
        """
        payload: Dict[str, Any] = {"inputs": text}
        response = self.post(
            json=payload,
            model=model,
            task="token-classification",
        )
        return TokenClassificationOutputElement.parse_obj_as_list(response)

    def translation(
        self, text: str, *, model: Optional[str] = None, src_lang: Optional[str] = None, tgt_lang: Optional[str] = None
    ) -> TranslationOutput:
        """
        Convert text from one language to another.

        Check out https://huggingface.co/tasks/translation for more information on how to choose the best model for
        your specific use case. Source and target languages usually depend on the model.
        However, it is possible to specify source and target languages for certain models. If you are working with one of these models,
        you can use `src_lang` and `tgt_lang` arguments to pass the relevant information.
        You can find this information in the model card.

        Args:
            text (`str`):
                A string to be translated.
            model (`str`, *optional*):
                The model to use for the translation task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended translation model will be used.
                Defaults to None.
            src_lang (`str`, *optional*):
                Source language of the translation task, i.e. input language. Cannot be passed without `tgt_lang`.
            tgt_lang (`str`, *optional*):
                Target language of the translation task, i.e. output language. Cannot be passed without `src_lang`.

        Returns:
            [`TranslationOutput`]: The generated translated text.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.
            `ValueError`:
                If only one of the `src_lang` and `tgt_lang` arguments are provided.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.translation("My name is Wolfgang and I live in Berlin")
        'Mein Name ist Wolfgang und ich lebe in Berlin.'
        >>> client.translation("My name is Wolfgang and I live in Berlin", model="Helsinki-NLP/opus-mt-en-fr")
        TranslationOutput(translation_text='Je m\'appelle Wolfgang et je vis à Berlin.')
        ```

        Specifying languages:
        ```py
        >>> client.translation("My name is Sarah Jessica Parker but you can call me Jessica", model="facebook/mbart-large-50-many-to-many-mmt", src_lang="en_XX", tgt_lang="fr_XX")
        "Mon nom est Sarah Jessica Parker mais vous pouvez m\'appeler Jessica"
        ```
        """
        # Throw error if only one of `src_lang` and `tgt_lang` was given
        if src_lang is not None and tgt_lang is None:
            raise ValueError("You cannot specify `src_lang` without specifying `tgt_lang`.")

        if src_lang is None and tgt_lang is not None:
            raise ValueError("You cannot specify `tgt_lang` without specifying `src_lang`.")

        # If both `src_lang` and `tgt_lang` are given, pass them to the request body
        payload: Dict = {"inputs": text}
        if src_lang and tgt_lang:
            payload["parameters"] = {"src_lang": src_lang, "tgt_lang": tgt_lang}
        response = self.post(json=payload, model=model, task="translation")
        return TranslationOutput.parse_obj_as_list(response)[0]

    def visual_question_answering(
        self,
        image: ContentT,
        question: str,
        *,
        model: Optional[str] = None,
    ) -> List[VisualQuestionAnsweringOutputElement]:
        """
        Answering open-ended questions based on an image.

        Args:
            image (`Union[str, Path, bytes, BinaryIO]`):
                The input image for the context. It can be raw bytes, an image file, or a URL to an online image.
            question (`str`):
                Question to be answered.
            model (`str`, *optional*):
                The model to use for the visual question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to
                a deployed Inference Endpoint. If not provided, the default recommended visual question answering model will be used.
                Defaults to None.

        Returns:
            `List[VisualQuestionAnsweringOutputElement]`: a list of [`VisualQuestionAnsweringOutputElement`] items containing the predicted label and associated probability.

        Raises:
            `InferenceTimeoutError`:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.visual_question_answering(
        ...     image="https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg",
        ...     question="What is the animal doing?"
        ... )
        [
            VisualQuestionAnsweringOutputElement(score=0.778609573841095, answer='laying down'),
            VisualQuestionAnsweringOutputElement(score=0.6957435607910156, answer='sitting'),
        ]
        ```
        """
        payload: Dict[str, Any] = {"question": question, "image": _b64_encode(image)}
        response = self.post(json=payload, model=model, task="visual-question-answering")
        return VisualQuestionAnsweringOutputElement.parse_obj_as_list(response)

    def zero_shot_classification(
        self,
        text: str,
        labels: List[str],
        *,
        multi_label: bool = False,
        hypothesis_template: Optional[str] = None,
        model: Optional[str] = None,
    ) -> List[ZeroShotClassificationOutputElement]:
        """
        Provide as input a text and a set of candidate labels to classify the input text.

        Args:
            text (`str`):
                The input text to classify.
            labels (`List[str]`):
                List of strings. Each string is the verbalization of a possible label for the input text.
            multi_label (`bool`):
                Boolean. If True, the probability for each label is evaluated independently and multiple labels can have a probability close to 1 simultaneously or all probabilities can be close to 0.
                If False, the labels are considered mutually exclusive and the probability over all labels always sums to 1. Defaults to False.
            hypothesis_template (`str`, *optional*):
                A template sentence string with curly brackets to which the label strings are added. The label strings are added at the position of the curly brackets "{}".
                Zero-shot classifiers are based on NLI models, which evaluate if a hypothesis is entailed in another text or not.
                For example, with hypothesis_template="This text is about {}." and labels=["economics", "politics"], the system internally creates the two hypotheses "This text is about economics." and "This text is about politics.".
                The model then evaluates for both hypotheses if they are entailed in the provided `text` or not.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            `List[ZeroShotClassificationOutputElement]`: List of [`ZeroShotClassificationOutputElement`] items containing the predicted labels and their confidence.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example with `multi_label=False`:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> text = (
        ...     "A new model offers an explanation for how the Galilean satellites formed around the solar system's"
        ...     "largest world. Konstantin Batygin did not set out to solve one of the solar system's most puzzling"
        ...     " mysteries when he went for a run up a hill in Nice, France."
        ... )
        >>> labels = ["space & cosmos", "scientific discovery", "microbiology", "robots", "archeology"]
        >>> client.zero_shot_classification(text, labels)
        [
            ZeroShotClassificationOutputElement(label='scientific discovery', score=0.7961668968200684),
            ZeroShotClassificationOutputElement(label='space & cosmos', score=0.18570658564567566),
            ZeroShotClassificationOutputElement(label='microbiology', score=0.00730885099619627),
            ZeroShotClassificationOutputElement(label='archeology', score=0.006258360575884581),
            ZeroShotClassificationOutputElement(label='robots', score=0.004559356719255447),
        ]
        >>> client.zero_shot_classification(text, labels, multi_label=True)
        [
            ZeroShotClassificationOutputElement(label='scientific discovery', score=0.9829297661781311),
            ZeroShotClassificationOutputElement(label='space & cosmos', score=0.755190908908844),
            ZeroShotClassificationOutputElement(label='microbiology', score=0.0005462635890580714),
            ZeroShotClassificationOutputElement(label='archeology', score=0.00047131875180639327),
            ZeroShotClassificationOutputElement(label='robots', score=0.00030448526376858354),
        ]
        ```

        Example with `multi_label=True` and a custom `hypothesis_template`:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.zero_shot_classification(
        ...    text="I really like our dinner and I'm very happy. I don't like the weather though.",
        ...    labels=["positive", "negative", "pessimistic", "optimistic"],
        ...    multi_label=True,
        ...    hypothesis_template="This text is {} towards the weather"
        ... )
        [
            ZeroShotClassificationOutputElement(label='negative', score=0.9231801629066467),
            ZeroShotClassificationOutputElement(label='pessimistic', score=0.8760990500450134),
            ZeroShotClassificationOutputElement(label='optimistic', score=0.0008674879791215062),
            ZeroShotClassificationOutputElement(label='positive', score=0.0005250611575320363)
        ]
        ```
        """

        parameters = {"candidate_labels": labels, "multi_label": multi_label}
        if hypothesis_template is not None:
            parameters["hypothesis_template"] = hypothesis_template

        response = self.post(
            json={
                "inputs": text,
                "parameters": parameters,
            },
            task="zero-shot-classification",
            model=model,
        )
        output = _bytes_to_dict(response)
        return [
            ZeroShotClassificationOutputElement.parse_obj_as_instance({"label": label, "score": score})
            for label, score in zip(output["labels"], output["scores"])
        ]

    def zero_shot_image_classification(
        self, image: ContentT, labels: List[str], *, model: Optional[str] = None
    ) -> List[ZeroShotImageClassificationOutputElement]:
        """
        Provide input image and text labels to predict text labels for the image.

        Args:
            image (`Union[str, Path, bytes, BinaryIO]`):
                The input image to caption. It can be raw bytes, an image file, or a URL to an online image.
            labels (`List[str]`):
                List of string possible labels. There must be at least 2 labels.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            `List[ZeroShotImageClassificationOutputElement]`: List of [`ZeroShotImageClassificationOutputElement`] items containing the predicted labels and their confidence.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()

        >>> client.zero_shot_image_classification(
        ...     "https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg",
        ...     labels=["dog", "cat", "horse"],
        ... )
        [ZeroShotImageClassificationOutputElement(label='dog', score=0.956),...]
        ```
        """
        # Raise ValueError if input is less than 2 labels
        if len(labels) < 2:
            raise ValueError("You must specify at least 2 classes to compare.")

        response = self.post(
            json={"image": _b64_encode(image), "parameters": {"candidate_labels": ",".join(labels)}},
            model=model,
            task="zero-shot-image-classification",
        )
        return ZeroShotImageClassificationOutputElement.parse_obj_as_list(response)

    def _resolve_url(self, model: Optional[str] = None, task: Optional[str] = None) -> str:
        model = model or self.model or self.base_url

        # If model is already a URL, ignore `task` and return directly
        if model is not None and (model.startswith("http://") or model.startswith("https://")):
            return model

        # # If no model but task is set => fetch the recommended one for this task
        if model is None:
            if task is None:
                raise ValueError(
                    "You must specify at least a model (repo_id or URL) or a task, either when instantiating"
                    " `InferenceClient` or when making a request."
                )
            model = self.get_recommended_model(task)
            logger.info(
                f"Using recommended model {model} for task {task}. Note that it is"
                f" encouraged to explicitly set `model='{model}'` as the recommended"
                " models list might get updated without prior notice."
            )

        # Compute InferenceAPI url
        return (
            # Feature-extraction and sentence-similarity are the only cases where we handle models with several tasks.
            f"{INFERENCE_ENDPOINT}/pipeline/{task}/{model}"
            if task in ("feature-extraction", "sentence-similarity")
            # Otherwise, we use the default endpoint
            else f"{INFERENCE_ENDPOINT}/models/{model}"
        )

    @staticmethod
    def get_recommended_model(task: str) -> str:
        """
        Get the model Hugging Face recommends for the input task.

        Args:
            task (`str`):
                The Hugging Face task to get which model Hugging Face recommends.
                All available tasks can be found [here](https://huggingface.co/tasks).

        Returns:
            `str`: Name of the model recommended for the input task.

        Raises:
            `ValueError`: If Hugging Face has no recommendation for the input task.
        """
        model = _fetch_recommended_models().get(task)
        if model is None:
            raise ValueError(
                f"Task {task} has no recommended model. Please specify a model"
                " explicitly. Visit https://huggingface.co/tasks for more info."
            )
        return model

    def get_endpoint_info(self, *, model: Optional[str] = None) -> Dict[str, Any]:
        """
        Get information about the deployed endpoint.

        This endpoint is only available on endpoints powered by Text-Generation-Inference (TGI) or Text-Embedding-Inference (TEI).
        Endpoints powered by `transformers` return an empty payload.

        Args:
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            `Dict[str, Any]`: Information about the endpoint.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
        >>> client.get_endpoint_info()
        {
            'model_id': 'meta-llama/Meta-Llama-3-70B-Instruct',
            'model_sha': None,
            'model_dtype': 'torch.float16',
            'model_device_type': 'cuda',
            'model_pipeline_tag': None,
            'max_concurrent_requests': 128,
            'max_best_of': 2,
            'max_stop_sequences': 4,
            'max_input_length': 8191,
            'max_total_tokens': 8192,
            'waiting_served_ratio': 0.3,
            'max_batch_total_tokens': 1259392,
            'max_waiting_tokens': 20,
            'max_batch_size': None,
            'validation_workers': 32,
            'max_client_batch_size': 4,
            'version': '2.0.2',
            'sha': 'dccab72549635c7eb5ddb17f43f0b7cdff07c214',
            'docker_label': 'sha-dccab72'
        }
        ```
        """
        model = model or self.model
        if model is None:
            raise ValueError("Model id not provided.")
        if model.startswith(("http://", "https://")):
            url = model.rstrip("/") + "/info"
        else:
            url = f"{INFERENCE_ENDPOINT}/models/{model}/info"

        response = get_session().get(url, headers=self.headers)
        hf_raise_for_status(response)
        return response.json()

    def health_check(self, model: Optional[str] = None) -> bool:
        """
        Check the health of the deployed endpoint.

        Health check is only available with Inference Endpoints powered by Text-Generation-Inference (TGI) or Text-Embedding-Inference (TEI).
        For Inference API, please use [`InferenceClient.get_model_status`] instead.

        Args:
            model (`str`, *optional*):
                URL of the Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.

        Returns:
            `bool`: True if everything is working fine.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient("https://jzgu0buei5.us-east-1.aws.endpoints.huggingface.cloud")
        >>> client.health_check()
        True
        ```
        """
        model = model or self.model
        if model is None:
            raise ValueError("Model id not provided.")
        if not model.startswith(("http://", "https://")):
            raise ValueError(
                "Model must be an Inference Endpoint URL. For serverless Inference API, please use `InferenceClient.get_model_status`."
            )
        url = model.rstrip("/") + "/health"

        response = get_session().get(url, headers=self.headers)
        return response.status_code == 200

    def get_model_status(self, model: Optional[str] = None) -> ModelStatus:
        """
        Get the status of a model hosted on the Inference API.

        <Tip>

        This endpoint is mostly useful when you already know which model you want to use and want to check its
        availability. If you want to discover already deployed models, you should rather use [`~InferenceClient.list_deployed_models`].

        </Tip>

        Args:
            model (`str`, *optional*):
                Identifier of the model for witch the status gonna be checked. If model is not provided,
                the model associated with this instance of [`InferenceClient`] will be used. Only InferenceAPI service can be checked so the
                identifier cannot be a URL.


        Returns:
            [`ModelStatus`]: An instance of ModelStatus dataclass, containing information,
                         about the state of the model: load, state, compute type and framework.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()
        >>> client.get_model_status("meta-llama/Meta-Llama-3-8B-Instruct")
        ModelStatus(loaded=True, state='Loaded', compute_type='gpu', framework='text-generation-inference')
        ```
        """
        model = model or self.model
        if model is None:
            raise ValueError("Model id not provided.")
        if model.startswith("https://"):
            raise NotImplementedError("Model status is only available for Inference API endpoints.")
        url = f"{INFERENCE_ENDPOINT}/status/{model}"

        response = get_session().get(url, headers=self.headers)
        hf_raise_for_status(response)
        response_data = response.json()

        if "error" in response_data:
            raise ValueError(response_data["error"])

        return ModelStatus(
            loaded=response_data["loaded"],
            state=response_data["state"],
            compute_type=response_data["compute_type"],
            framework=response_data["framework"],
        )

    @property
    def chat(self) -> "ProxyClientChat":
        return ProxyClientChat(self)


class _ProxyClient:
    """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client."""

    def __init__(self, client: InferenceClient):
        self._client = client


class ProxyClientChat(_ProxyClient):
    """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client."""

    @property
    def completions(self) -> "ProxyClientChatCompletions":
        return ProxyClientChatCompletions(self._client)


class ProxyClientChatCompletions(_ProxyClient):
    """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client."""

    @property
    def create(self):
        return self._client.chat_completion